A Bayesian method is proposed for variable selection in high-dimensional matrix autoregressive models which reflects and exploits the original matrix structure of data to (a) reduce dimensionality and (b) foster interpretability of multidimensional relationship structures. A compact form of the model is derived which facilitates the estimation procedure and two computational methods for the estimation are proposed: a Markov chain Monte Carlo algorithm and a scalable Bayesian EM algorithm. Being based on the spike-and-slab framework for fast posterior mode identification, the latter enables Bayesian data analysis of matrix-valued time series at large scales. The theoretical properties, comparative performance, and computational efficiency of the proposed model is investigated through simulated examples and an application to a panel of country economic indicators.

Bayesian variable selection for matrix autoregressive models

Pagnottoni, Paolo
;
2024-01-01

Abstract

A Bayesian method is proposed for variable selection in high-dimensional matrix autoregressive models which reflects and exploits the original matrix structure of data to (a) reduce dimensionality and (b) foster interpretability of multidimensional relationship structures. A compact form of the model is derived which facilitates the estimation procedure and two computational methods for the estimation are proposed: a Markov chain Monte Carlo algorithm and a scalable Bayesian EM algorithm. Being based on the spike-and-slab framework for fast posterior mode identification, the latter enables Bayesian data analysis of matrix-valued time series at large scales. The theoretical properties, comparative performance, and computational efficiency of the proposed model is investigated through simulated examples and an application to a panel of country economic indicators.
2024
2024
Autoregressive models; Bayesian estimation; Matrix-valued time series; Maximum a posteriori probability; Stochastic search
Celani, Alessandro; Pagnottoni, Paolo; Jones, Galin
File in questo prodotto:
File Dimensione Formato  
Bayesian-variable-selection-for-matrix-autoregressive-modelsStatistics-and-Computing.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2169391
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact