A great bulk of recent experimental evidence suggests the key role of the complex crosstalk between the extracellular matrix (ECM) and the cellular component of tissues during morphogenesis and embryogenesis. In particular, remodeling of the ECM and of its physical interactions pattern with surrounding cells represent two crucial processes that might be involved in muscle development. However, little information is available on this topic, especially on invertebrate species. To obtain new insights on how tuning the ECM microenvironment might drive cellular fate during embryonic development, we used the invertebrate medicinal leech Hirudo verbana as a valuable experimental model, due to its simple anatomy and the recapitulation of many aspects of the basic biological processes of vertebrates. Our previous studies on leech post-embryonic development have already shown the pivotal role of ECM changes during the growth of the body wall and the role of Yes-associated protein 1 (YAP1) in mechanotransduction. Here, we suggest that the interactions between stromal cell telocytes and ECM might be crucial in driving the organization of muscle layers during embryogenesis. Furthermore, we propose a possible role of the pleiotropic enzyme HvRNASET2 as a possible modulator of collagen deposition and ECM remodeling not only during regenerative processes (as previously demonstrated) but also in embryogenesis.
Dynamic relationship among extracellular matrix and body wall cells in Hirudo verbana morphogenesis
Pulze L.;Baranzini N.;Acquati F.;Marcolli G.;Grimaldi A.
2024-01-01
Abstract
A great bulk of recent experimental evidence suggests the key role of the complex crosstalk between the extracellular matrix (ECM) and the cellular component of tissues during morphogenesis and embryogenesis. In particular, remodeling of the ECM and of its physical interactions pattern with surrounding cells represent two crucial processes that might be involved in muscle development. However, little information is available on this topic, especially on invertebrate species. To obtain new insights on how tuning the ECM microenvironment might drive cellular fate during embryonic development, we used the invertebrate medicinal leech Hirudo verbana as a valuable experimental model, due to its simple anatomy and the recapitulation of many aspects of the basic biological processes of vertebrates. Our previous studies on leech post-embryonic development have already shown the pivotal role of ECM changes during the growth of the body wall and the role of Yes-associated protein 1 (YAP1) in mechanotransduction. Here, we suggest that the interactions between stromal cell telocytes and ECM might be crucial in driving the organization of muscle layers during embryogenesis. Furthermore, we propose a possible role of the pleiotropic enzyme HvRNASET2 as a possible modulator of collagen deposition and ECM remodeling not only during regenerative processes (as previously demonstrated) but also in embryogenesis.File | Dimensione | Formato | |
---|---|---|---|
Pulze et al. 2024.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.7 MB
Formato
Adobe PDF
|
3.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.