Bitcoins are traded on various exchange platforms and, therefore, prices may differ across trading venues. We aim to investigate return connectedness across eight of the major exchanges of Bitcoin, both from a static and a dynamic viewpoint. To this end, we employ an extension of the order-invariant forecast error variance decomposition proposed by Diebold and Yilmaz (2012) to a generalized vector error correction framework. Our results suggest that there is strong connectedness among the exchanges, as expected, although some of them behave dissimilarly. We identify Bitfinex and Coinbase as leading exchanges during the considered period, while Kraken as a follower exchange. We also obtain that connectedness across exchanges is strongly dynamic, as it evolves over time.
Vector error correction models to measure connectedness of Bitcoin exchange markets
Giudici P.;Pagnottoni P.
2020-01-01
Abstract
Bitcoins are traded on various exchange platforms and, therefore, prices may differ across trading venues. We aim to investigate return connectedness across eight of the major exchanges of Bitcoin, both from a static and a dynamic viewpoint. To this end, we employ an extension of the order-invariant forecast error variance decomposition proposed by Diebold and Yilmaz (2012) to a generalized vector error correction framework. Our results suggest that there is strong connectedness among the exchanges, as expected, although some of them behave dissimilarly. We identify Bitfinex and Coinbase as leading exchanges during the considered period, while Kraken as a follower exchange. We also obtain that connectedness across exchanges is strongly dynamic, as it evolves over time.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.