We develop a dynamical theory for the origin of nuclear rings in barred galaxies. In analogy with the standard theory of accretion discs, our theory is based on shear viscous forces among nested annuli of gas. However, the fact that gas follows non-circular orbits in an external barred potential has profound consequences: it creates a region of reverse shear in which it is energetically favourable to form a stable ring that does not spread despite dissipation. Our theory allows us to approximately predict the size of the ring given the underlying gravitational potential. The size of the ring is loosely related to the location of the Inner Lindblad Resonance in the epicyclic approximation, but the predicted location ismore accurate and is also valid for strongly barred potentials. By comparing analytical predictions with the results of hydrodynamical simulations, we find that our theory provides a viable mechanism for ring formation if the effective sound speed of the gas is low (c(s) less than or similar to 1km s(-1)), but that nuclear spirals/shocks created by pressure destroy the ring when the sound speed is high (c(s) similar or equal to 10 km s(-1)). We conclude that whether this mechanism for ring formation is relevant for real galaxies ultimately depends on the effective equation of state of the interstellar medium (ISM). Promising confirmation comes from simulations in which the ISM is modelled using state-of-the-art cooling functions coupled to live chemical networks, but more tests are needed regarding the role of turbulence driven by stellar feedback. If the mechanism is relevant in real galaxies, it could provide a powerful tool to constrain the gravitational potential, in particular the bar pattern speed .

A dynamical mechanism for the origin of nuclear rings

Sormani M
;
2018-01-01

Abstract

We develop a dynamical theory for the origin of nuclear rings in barred galaxies. In analogy with the standard theory of accretion discs, our theory is based on shear viscous forces among nested annuli of gas. However, the fact that gas follows non-circular orbits in an external barred potential has profound consequences: it creates a region of reverse shear in which it is energetically favourable to form a stable ring that does not spread despite dissipation. Our theory allows us to approximately predict the size of the ring given the underlying gravitational potential. The size of the ring is loosely related to the location of the Inner Lindblad Resonance in the epicyclic approximation, but the predicted location ismore accurate and is also valid for strongly barred potentials. By comparing analytical predictions with the results of hydrodynamical simulations, we find that our theory provides a viable mechanism for ring formation if the effective sound speed of the gas is low (c(s) less than or similar to 1km s(-1)), but that nuclear spirals/shocks created by pressure destroy the ring when the sound speed is high (c(s) similar or equal to 10 km s(-1)). We conclude that whether this mechanism for ring formation is relevant for real galaxies ultimately depends on the effective equation of state of the interstellar medium (ISM). Promising confirmation comes from simulations in which the ISM is modelled using state-of-the-art cooling functions coupled to live chemical networks, but more tests are needed regarding the role of turbulence driven by stellar feedback. If the mechanism is relevant in real galaxies, it could provide a powerful tool to constrain the gravitational potential, in particular the bar pattern speed .
2018
2018
ISM: kinematics and dynamics – galaxies: kinematics and dynamics – galaxies: nuclei
Sormani, M; Sobacchi, E; Fragkoudi, F; Ridley, M; Tress, Rg; Glover, Sco; Klessen, Rs
File in questo prodotto:
File Dimensione Formato  
Sormani2018a.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 6.98 MB
Formato Adobe PDF
6.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2170746
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
social impact