We present a study of synthetic observations of polarized dust emission at 353 GHz as seen by an observer within a cavity in the interstellar medium (ISM). The cavity is selected from a magnetohydrodynamic simulation of the local ISM with time-dependent chemistry, star formation, and stellar feedback in form of supernova explosions with physical properties comparable to the Local Bubble ones. We find that the local density enhancement together with the coherent magnetic field in the cavity walls makes the selected candidate a translucent polarization filter to the emission coming from beyond its domains. This underlines the importance of studying the Local Bubble in further detail. The magnetic field lines inferred from synthetic dust polarization data are qualitatively in agreement with the all-sky maps of polarized emission at 353 GHz from the Planck satellite in the latitudes interval 15 degrees less than or similar to vertical bar b vertical bar less than or similar to 65 degrees. As our numerical simulation allows us to track the galactic mid-plane only out to distances of 250 pc, we exclude the region vertical bar b vertical bar less than or similar to 15 degrees from our analysis. At large galactic latitudes, our model exhibits a high degree of small-scale structures. On the contrary, the observed polarization pattern around the Galactic Poles is relatively coherent and regular, and we argue that the global toroidal magnetic field of the Milky Way is important for explaining the data at vertical bar b vertical bar greater than or similar to 65 degrees. We show that from our synthetic polarization maps, it is difficult to distinguish between an open and a closed galactic cap using the inferred magnetic field morphology alone.

Modelling Local Bubble analogs: synthetic dust polarization maps

Sormani M;
2023-01-01

Abstract

We present a study of synthetic observations of polarized dust emission at 353 GHz as seen by an observer within a cavity in the interstellar medium (ISM). The cavity is selected from a magnetohydrodynamic simulation of the local ISM with time-dependent chemistry, star formation, and stellar feedback in form of supernova explosions with physical properties comparable to the Local Bubble ones. We find that the local density enhancement together with the coherent magnetic field in the cavity walls makes the selected candidate a translucent polarization filter to the emission coming from beyond its domains. This underlines the importance of studying the Local Bubble in further detail. The magnetic field lines inferred from synthetic dust polarization data are qualitatively in agreement with the all-sky maps of polarized emission at 353 GHz from the Planck satellite in the latitudes interval 15 degrees less than or similar to vertical bar b vertical bar less than or similar to 65 degrees. As our numerical simulation allows us to track the galactic mid-plane only out to distances of 250 pc, we exclude the region vertical bar b vertical bar less than or similar to 15 degrees from our analysis. At large galactic latitudes, our model exhibits a high degree of small-scale structures. On the contrary, the observed polarization pattern around the Galactic Poles is relatively coherent and regular, and we argue that the global toroidal magnetic field of the Milky Way is important for explaining the data at vertical bar b vertical bar greater than or similar to 65 degrees. We show that from our synthetic polarization maps, it is difficult to distinguish between an open and a closed galactic cap using the inferred magnetic field morphology alone.
2023
2023
polarization – ISM: bubbles – ISM: general – ISM: magnetic fields
Maconi, E; Soler, Jd; Reissl, S; Girichidis, P; Klessen, Rs; Hennebelle, P; Molinari, S; Testi, L; Smith, Rj; Sormani, M; Teh, Jw; Traficante, A
File in questo prodotto:
File Dimensione Formato  
Maconi_2023.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 4.86 MB
Formato Adobe PDF
4.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2171017
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact