The Galactic bar plays a critical role in the evolution of the Milky Way's Central Molecular Zone (CMZ), driving gas toward the Galactic Center via gas flows known as dust lanes. To explore the interaction between the CMZ and the dust lanes, we run hydrodynamic simulations in arepo, modeling the potential of the Milky Way's bar in the absence of gas self-gravity and star formation physics, and we study the flows of mass using Monte Carlo tracer particles. We estimate the efficiency of the inflow via the dust lanes, finding that only about a third (30% +/- 12%) of the dust lanes' mass initially accretes onto the CMZ, while the rest overshoots and accretes later. Given observational estimates of the amount of gas within the Milky Way's dust lanes, this suggests that the true total inflow rate onto the CMZ is 0.8 +/- 0.6 M (circle dot) yr(-1). Clouds in this simulated CMZ have sudden peaks in their average density near the apocenter, where they undergo violent collisions with inflowing material. While these clouds tend to counter-rotate due to shear, co-rotating clouds occasionally occur due to the injection of momentum from collisions with inflowing material (similar to 52% are strongly counter-rotating, and similar to 7% are strongly co-rotating of the 44 cloud sample). We investigate the formation and evolution of these clouds, finding that they are fed by many discrete inflow events, providing a consistent source of gas to CMZ clouds even as they collapse and form stars.

Dynamically Driven Inflow onto the Galactic Center and its Effect upon Molecular Clouds

Sormani M;
2021-01-01

Abstract

The Galactic bar plays a critical role in the evolution of the Milky Way's Central Molecular Zone (CMZ), driving gas toward the Galactic Center via gas flows known as dust lanes. To explore the interaction between the CMZ and the dust lanes, we run hydrodynamic simulations in arepo, modeling the potential of the Milky Way's bar in the absence of gas self-gravity and star formation physics, and we study the flows of mass using Monte Carlo tracer particles. We estimate the efficiency of the inflow via the dust lanes, finding that only about a third (30% +/- 12%) of the dust lanes' mass initially accretes onto the CMZ, while the rest overshoots and accretes later. Given observational estimates of the amount of gas within the Milky Way's dust lanes, this suggests that the true total inflow rate onto the CMZ is 0.8 +/- 0.6 M (circle dot) yr(-1). Clouds in this simulated CMZ have sudden peaks in their average density near the apocenter, where they undergo violent collisions with inflowing material. While these clouds tend to counter-rotate due to shear, co-rotating clouds occasionally occur due to the injection of momentum from collisions with inflowing material (similar to 52% are strongly counter-rotating, and similar to 7% are strongly co-rotating of the 44 cloud sample). We investigate the formation and evolution of these clouds, finding that they are fed by many discrete inflow events, providing a consistent source of gas to CMZ clouds even as they collapse and form stars.
2021
2021
Hatchfield, Hp; Sormani, M; Tress, Rg; Battersby, C; Smith, Rj; Glover, Sco; Klessen, Rs
File in questo prodotto:
File Dimensione Formato  
Hatchfield_2021_ApJ_922_79.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 3.54 MB
Formato Adobe PDF
3.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2171042
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact