This paper explores the application of Random Matrix Theory (RMT) as a methodological enhancement for portfolio selection within financial markets. Traditional approaches to portfolio optimization often rely on historical estimates of correlation matrices, which are particularly susceptible to instabilities. To address this challenge, we combine a data preprocessing technique based on the Hilbert transformation of returns with RMT to refine the accuracy and robustness of correlation matrix estimation. By comparing empirical correlations with those generated through RMT, we reveal non-random properties and uncover underlying relationships within financial data. We then utilize this methodology to construct the correlation network dependence structure used in portfolio optimization. The empirical analysis presented in this paper validates the effectiveness of RMT in enhancing portfolio diversification and risk management strategies. This research contributes by offering investors and portfolio managers with methodological insights to construct portfolios that are more stable, robust, and diversified. At the same time, it advances our comprehension of the intricate statistical principles underlying multivariate financial data.

Enhancing Portfolio Allocation: A Random Matrix Theory Perspective

Vanni, Fabio
;
Hitaj, Asmerilda;Mastrogiacomo, Elisa
2024-01-01

Abstract

This paper explores the application of Random Matrix Theory (RMT) as a methodological enhancement for portfolio selection within financial markets. Traditional approaches to portfolio optimization often rely on historical estimates of correlation matrices, which are particularly susceptible to instabilities. To address this challenge, we combine a data preprocessing technique based on the Hilbert transformation of returns with RMT to refine the accuracy and robustness of correlation matrix estimation. By comparing empirical correlations with those generated through RMT, we reveal non-random properties and uncover underlying relationships within financial data. We then utilize this methodology to construct the correlation network dependence structure used in portfolio optimization. The empirical analysis presented in this paper validates the effectiveness of RMT in enhancing portfolio diversification and risk management strategies. This research contributes by offering investors and portfolio managers with methodological insights to construct portfolios that are more stable, robust, and diversified. At the same time, it advances our comprehension of the intricate statistical principles underlying multivariate financial data.
2024
2024
dependence structure; Hilbert transformation; networks; portfolio selection; random matrix theory
Vanni, Fabio; Hitaj, Asmerilda; Mastrogiacomo, Elisa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2171131
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact