This article introduces an analytical framework that interprets individual measures of entropy-based mobility derived from mobile phone data. We explore and analyze two widely recognized entropy metrics: random entropy and uncorrelated Shannon entropy. These metrics are estimated through collective variables of human mobility, including movement trends and population density. By employing a collisional model, we establish statistical relationships between entropy measures and mobility variables. Furthermore, our research addresses three primary objectives: firstly, validating the model; secondly, exploring correlations between aggregated mobility and entropy measures in comparison to five economic indicators; and finally, demonstrating the utility of entropy measures. Specifically, we provide an effective population density estimate that offers a more realistic understanding of social interactions. This estimation takes into account both movement regularities and intensity, utilizing real-time data analysis conducted during the peak period of the COVID-19 pandemic.
On an Aggregated Estimate for Human Mobility Regularities through Movement Trends and Population Density
Vanni, Fabio
Primo
;
2024-01-01
Abstract
This article introduces an analytical framework that interprets individual measures of entropy-based mobility derived from mobile phone data. We explore and analyze two widely recognized entropy metrics: random entropy and uncorrelated Shannon entropy. These metrics are estimated through collective variables of human mobility, including movement trends and population density. By employing a collisional model, we establish statistical relationships between entropy measures and mobility variables. Furthermore, our research addresses three primary objectives: firstly, validating the model; secondly, exploring correlations between aggregated mobility and entropy measures in comparison to five economic indicators; and finally, demonstrating the utility of entropy measures. Specifically, we provide an effective population density estimate that offers a more realistic understanding of social interactions. This estimation takes into account both movement regularities and intensity, utilizing real-time data analysis conducted during the peak period of the COVID-19 pandemic.File | Dimensione | Formato | |
---|---|---|---|
entropy-26-00398-3.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.