In this talk, the physics of microring resonators is discussed in the classical and quantum regimes, in the context of the exploitation of chi-3 effects in these cavities as done by our group. Through the implementation of a novel microring pumping scheme and a quantum reinterpretation of the frequency comb, we present an integrated platform for the generation of quantum optical states spread over multiple optical modes. The scheme allows for highly stable and potentially fullyintegrable quantum light sources. Following the demonstration of a multiplexed heralded photon source, the scheme also enabled the first demonstration of a new nonlinear process on the integrated platform (type II spontaneous four-wave mixing) allowing the first direct generation of polarization-diverse photon pairs, where the first time two ring modes can be pumped in a stable configuration.

Quantum photonic circuits for optical signal processing

Caspani L.;Clerici M.;
2015-01-01

Abstract

In this talk, the physics of microring resonators is discussed in the classical and quantum regimes, in the context of the exploitation of chi-3 effects in these cavities as done by our group. Through the implementation of a novel microring pumping scheme and a quantum reinterpretation of the frequency comb, we present an integrated platform for the generation of quantum optical states spread over multiple optical modes. The scheme allows for highly stable and potentially fullyintegrable quantum light sources. Following the demonstration of a multiplexed heralded photon source, the scheme also enabled the first demonstration of a new nonlinear process on the integrated platform (type II spontaneous four-wave mixing) allowing the first direct generation of polarization-diverse photon pairs, where the first time two ring modes can be pumped in a stable configuration.
2015
Piotr Roztocki*, Michael Kues, Christian Reimer, Luca Razzari, Roberto Morandotti, Lucia Caspani, Matteo Clerici, Marcello Ferrera, Marco Peccianti, Alessia Pasquazi, Brent E. Little, Sai T. Chu, David J. Moss
2015 Spatiotemporal Complexity in Nonlinear Optics, SCNO 2015
2015 Spatiotemporal Complexity in Nonlinear Optics, SCNO 2015
ita
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2171230
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact