Quantum photonic resources are critical for advanced applications such as quantum computation, communication, and information processing. Efficient generation and detection of quantum states, as well as reliable photon manipulation techniques, are essential for the development of practical quantum technologies. Integrated photonic platforms offer attractive solutions due to their stability, small device footprint, and improved power efficiencies. However, optical loss and environmental noise hinder their capability to transmit, measure, and detect quantum states with high accuracies. To tackle these limitations, we have developed robust solutions for quantum signal processing by leveraging infrastructures from telecommunications and integrated photonics. These approaches focus on the use of silicon-based photonic sources for entanglement generation in the time and frequency degrees of freedom, as well as chip- and fiber-based architectures for entanglement verification via quantum interference and tomography measurements. Our photonic schemes allow for high-dimensional entanglement processing, demonstrating their versatility in developing scalable and cost-efficient quantum signal processing platforms.

Scalable quantum signal processing with integrated photonics and fiber-based modules

Caspani L.;
2023-01-01

Abstract

Quantum photonic resources are critical for advanced applications such as quantum computation, communication, and information processing. Efficient generation and detection of quantum states, as well as reliable photon manipulation techniques, are essential for the development of practical quantum technologies. Integrated photonic platforms offer attractive solutions due to their stability, small device footprint, and improved power efficiencies. However, optical loss and environmental noise hinder their capability to transmit, measure, and detect quantum states with high accuracies. To tackle these limitations, we have developed robust solutions for quantum signal processing by leveraging infrastructures from telecommunications and integrated photonics. These approaches focus on the use of silicon-based photonic sources for entanglement generation in the time and frequency degrees of freedom, as well as chip- and fiber-based architectures for entanglement verification via quantum interference and tomography measurements. Our photonic schemes allow for high-dimensional entanglement processing, demonstrating their versatility in developing scalable and cost-efficient quantum signal processing platforms.
2023
International Conference on Transparent Optical Networks
9798350303032
23rd International Conference on Transparent Optical Networks, ICTON 2023
Bucharest
2 - 6 July 2023
File in questo prodotto:
File Dimensione Formato  
Scalable_Quantum_Signal_Processing_with_Integrated_Photonics_and_Fiber-based_Modules.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2171321
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact