NiO-based nanomaterials have attracted considerable interest for different applications, which have stimulated the implementation of various synthetic approaches aimed at modulating their chemico-physical properties. In this regard, their bottom-up preparation starting from suitable precursors plays an important role, although a molecular-level insight into their reactivity remains an open issue to be properly tackled. In the present study, we focused on the fragmentation of Ni(II) diketonate-diamine adducts, of interest as vapor-phase precursors for Ni(II) oxide systems, by combining electrospray ionization mass spectrometry (ESI-MS) with multiple collisional experiments (ESI-MSn) and theoretical calculations. The outcomes of this investigation revealed common features in the fragmentation pattern of the target compounds: (i) in the first fragmentation, the three complexes yield analogous base-peak cations by losing a negatively charged diketonate moiety; in these cations, Ni-O and Ni-N interactions are stronger and the Ni positive charge is lower than in the parent neutral complexes; (ii) the tendency of ligand electronic charge to migrate towards Ni further increases in the subsequent fragmentation, leading to the formation of a tetracoordinated Ni environment featuring an interesting cation-pi intramolecular interaction.

On the Fragmentation of Ni(II) β-Diketonate-Diamine Complexes as Molecular Precursors for NiO Films: A Theoretical and Experimental Investigation

Invernizzi C.;Tabacchi G.
;
Fois E.
2024-01-01

Abstract

NiO-based nanomaterials have attracted considerable interest for different applications, which have stimulated the implementation of various synthetic approaches aimed at modulating their chemico-physical properties. In this regard, their bottom-up preparation starting from suitable precursors plays an important role, although a molecular-level insight into their reactivity remains an open issue to be properly tackled. In the present study, we focused on the fragmentation of Ni(II) diketonate-diamine adducts, of interest as vapor-phase precursors for Ni(II) oxide systems, by combining electrospray ionization mass spectrometry (ESI-MS) with multiple collisional experiments (ESI-MSn) and theoretical calculations. The outcomes of this investigation revealed common features in the fragmentation pattern of the target compounds: (i) in the first fragmentation, the three complexes yield analogous base-peak cations by losing a negatively charged diketonate moiety; in these cations, Ni-O and Ni-N interactions are stronger and the Ni positive charge is lower than in the parent neutral complexes; (ii) the tendency of ligand electronic charge to migrate towards Ni further increases in the subsequent fragmentation, leading to the formation of a tetracoordinated Ni environment featuring an interesting cation-pi intramolecular interaction.
2024
2024
https://www.mdpi.com/1420-3049/29/3/642
NiO; chemical vapor deposition; density functional theory; molecular precursors; oxide nanomaterials; simulations; transition metal complexes
Invernizzi, C.; Tabacchi, G.; Seraglia, R.; Benedet, M.; Roverso, M.; Maccato, C.; Bogialli, S.; Barreca, D.; Fois, E.
File in questo prodotto:
File Dimensione Formato  
molecules-29-00642.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2171695
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact