Quantum-optical technologies are transforming communication and metrology by enabling security and sensitivity beyond classical limits. Currently, these technologies are available at visible, near-infrared (NIR) and telecom wavelengths but are strongly underdeveloped at longer wavelengths. There is a growing demand for quantum sources operating in the 2 μm region for various applications. For example, such sources can enable daylight satellite-to-ground based quantum communications by taking advantage of an atmospheric transparency window with reduced solar blackbody radiation compared to telecom wavelengths [1,2,3]. Moreover, squeezed 2 μm sources are expected to have an impact on quantum metrology. For example, in gravitational wave detectors (eg. LIGO), such long wavelengths could reduce the quantum noise and scattering loss from crystalline silicon test masses [4]. Here, we report the generation and characterisation of a photon pair source at 2.080 μm with coincidence-to-accidental ratio (CAR) exceeding 10.

Photon pair generation at 2.080μm by down-conversion

Caspani L.;Clerici M.
Ultimo
2019-01-01

Abstract

Quantum-optical technologies are transforming communication and metrology by enabling security and sensitivity beyond classical limits. Currently, these technologies are available at visible, near-infrared (NIR) and telecom wavelengths but are strongly underdeveloped at longer wavelengths. There is a growing demand for quantum sources operating in the 2 μm region for various applications. For example, such sources can enable daylight satellite-to-ground based quantum communications by taking advantage of an atmospheric transparency window with reduced solar blackbody radiation compared to telecom wavelengths [1,2,3]. Moreover, squeezed 2 μm sources are expected to have an impact on quantum metrology. For example, in gravitational wave detectors (eg. LIGO), such long wavelengths could reduce the quantum noise and scattering loss from crystalline silicon test masses [4]. Here, we report the generation and characterisation of a photon pair source at 2.080 μm with coincidence-to-accidental ratio (CAR) exceeding 10.
2019
Taylor Shields, Shashi Prabhakar, Damian Powell, Gregor Taylor, Dmitry Morozov, Mehdi Ebrahim, Michael Kues, Lucia Caspani, Corin Gawith, Robert Hadfield, Matteo Clerici
2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
deu
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2172176
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact