Over the past two decades, the airborne Light Detection and Ranging (LiDAR) system has become a useful tool for acquiring high-resolution topographic data, especially in active tectonics studies. Analyzing Digital Terrain Models (DTMs) from LiDAR exposes morpho-structural elements, aiding in the understanding of fault zones, among other applications. Despite its effectiveness, challenges persist in regions with rapid deformation, dense vegetation, and human impact. We propose an adapted workflow transitioning from the conventional airborne LiDAR system to the usage of drone-based LiDAR technology for higher-resolution data acquisition. Additionally, drones offer a more cost-effective solution, both in an initial investment and ongoing operational expenses. Our goal is to demonstrate how drone-based LiDAR enhances the identification of active deformation features, particularly for earthquake-induced surface faulting. To evaluate the potential of our technique, we conducted a drone-based LiDAR survey in the Casamicciola Terme area, north of Ischia Island, Italy, known for the occurrence of destructive shallow earthquakes, including the 2017 Md = 4 event. We assessed the quality of our acquired DTM by comparing it with existing elevation datasets for the same area. We discuss the advantages and limitations of each DTM product in relation to our results, particularly when applied to fault mapping. By analyzing derivative DTM products, we identified the fault scarps within the Casamicciola Holocene Graben (CHG) and mapped its structural geometry in detail. The analysis of both linear and areal geomorphic features allowed us to identify the primary factors influencing the current morphological arrangement of the CHG area. Our detailed map depicts a nested graben formed by two main structures (the Maio and Sentinella faults) and minor internal faults (the Purgatorio and Nizzola faults). High-resolution DEMs acquired by drone-based LiDAR facilitated detailed studies of the geomorphology and fault activity. A similar approach can be applied in regions where the evidence of high slip-rate faults is difficult to identify due to vegetation cover and inaccessibility.

Improving the Accuracy of Digital Terrain Models Using Drone-Based LiDAR for the Morpho-Structural Analysis of Active Calderas: The Case of Ischia Island, Italy

Silva-Fragoso, Argelia
Primo
Investigation
;
Nappi, Rosa
Investigation
;
Michetti, Alessandro Maria
Ultimo
Conceptualization
2024-01-01

Abstract

Over the past two decades, the airborne Light Detection and Ranging (LiDAR) system has become a useful tool for acquiring high-resolution topographic data, especially in active tectonics studies. Analyzing Digital Terrain Models (DTMs) from LiDAR exposes morpho-structural elements, aiding in the understanding of fault zones, among other applications. Despite its effectiveness, challenges persist in regions with rapid deformation, dense vegetation, and human impact. We propose an adapted workflow transitioning from the conventional airborne LiDAR system to the usage of drone-based LiDAR technology for higher-resolution data acquisition. Additionally, drones offer a more cost-effective solution, both in an initial investment and ongoing operational expenses. Our goal is to demonstrate how drone-based LiDAR enhances the identification of active deformation features, particularly for earthquake-induced surface faulting. To evaluate the potential of our technique, we conducted a drone-based LiDAR survey in the Casamicciola Terme area, north of Ischia Island, Italy, known for the occurrence of destructive shallow earthquakes, including the 2017 Md = 4 event. We assessed the quality of our acquired DTM by comparing it with existing elevation datasets for the same area. We discuss the advantages and limitations of each DTM product in relation to our results, particularly when applied to fault mapping. By analyzing derivative DTM products, we identified the fault scarps within the Casamicciola Holocene Graben (CHG) and mapped its structural geometry in detail. The analysis of both linear and areal geomorphic features allowed us to identify the primary factors influencing the current morphological arrangement of the CHG area. Our detailed map depicts a nested graben formed by two main structures (the Maio and Sentinella faults) and minor internal faults (the Purgatorio and Nizzola faults). High-resolution DEMs acquired by drone-based LiDAR facilitated detailed studies of the geomorphology and fault activity. A similar approach can be applied in regions where the evidence of high slip-rate faults is difficult to identify due to vegetation cover and inaccessibility.
2024
2024
https://www.mdpi.com/2072-4292/16/11/1899
drone-based LiDAR; active tectonics; volcanic earthquakes; seismogenic faults; Casamicciola Holocene Graben; Ischia Island
Silva-Fragoso, Argelia; Norini, Gianluca; Nappi, Rosa; Groppelli, Gianluca; Michetti, Alessandro Maria
File in questo prodotto:
File Dimensione Formato  
Silva-Fragoso et al 2024 Ischia Lidar capable faults (1).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2172717
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact