Fluctuations affect the functionality of nanodevices. Thermodynamic uncertainty relations (TURs), derived within the framework of stochastic thermodynamics, show that a minimal amount of dissipation is required to obtain a given relative energy current dispersion, that is, current precision has a thermodynamic cost. It is therefore of great interest to explore the possibility that TURs are violated, particularly for quantum systems, leading to accurate currents at lower cost. Here, we show that two quantum harmonic oscillators are synchronized by coupling to a common thermal environment, at strong dissipation and low temperature. In this regime, periodically modulated couplings to a second thermal reservoir, breaking time-reversal symmetry and taking advantage of non-Markovianity of this latter reservoir, lead to strong violation of TURs for local work currents, while maintaining finite output power. Our results pave the way for the use of synchronization in the thermodynamics of precision.

Synchronization-induced violation of thermodynamic uncertainty relations

Razzoli L.
Primo
;
Benenti G.
Penultimo
;
2024-01-01

Abstract

Fluctuations affect the functionality of nanodevices. Thermodynamic uncertainty relations (TURs), derived within the framework of stochastic thermodynamics, show that a minimal amount of dissipation is required to obtain a given relative energy current dispersion, that is, current precision has a thermodynamic cost. It is therefore of great interest to explore the possibility that TURs are violated, particularly for quantum systems, leading to accurate currents at lower cost. Here, we show that two quantum harmonic oscillators are synchronized by coupling to a common thermal environment, at strong dissipation and low temperature. In this regime, periodically modulated couplings to a second thermal reservoir, breaking time-reversal symmetry and taking advantage of non-Markovianity of this latter reservoir, lead to strong violation of TURs for local work currents, while maintaining finite output power. Our results pave the way for the use of synchronization in the thermodynamics of precision.
2024
2024
quantum thermodynamics; quantum dissipative systems; harmonic oscillators; thermodynamic uncertainty relations; non-Markovianity; synchronization
Razzoli, L.; Carrega, M.; Cavaliere, F.; Benenti, G.; Sassetti, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2178613
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact