Semiconductor nanocrystals (“quantum dots”) are light emitters with high quantum yield that are relatively easy to manufacture. There is therefore much interest in their possible application for the development of high-performance scintillators for use in high-energy physics. However, few previous studies have focused on the response of these materials to high-energy particles. To evaluate the potential for the use of nanocomposite scintillators in calorimetry, we are performing side-by-side tests of fine-sampling shashlyk calorimeter prototypes with both conventional and nanocomposite scintillators using electron and minimum-ionizing particle beams, allowing direct comparison of the performance obtained
Development of nanocomposite scintillators for use in high-energy physics
Carsi, S.;Lezzani, G.;Mangiacavalli, S.;Perna, L.;Prest, M.;Selmi, A.;
2024-01-01
Abstract
Semiconductor nanocrystals (“quantum dots”) are light emitters with high quantum yield that are relatively easy to manufacture. There is therefore much interest in their possible application for the development of high-performance scintillators for use in high-energy physics. However, few previous studies have focused on the response of these materials to high-energy particles. To evaluate the potential for the use of nanocomposite scintillators in calorimetry, we are performing side-by-side tests of fine-sampling shashlyk calorimeter prototypes with both conventional and nanocomposite scintillators using electron and minimum-ionizing particle beams, allowing direct comparison of the performance obtainedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.