In an infinite-dimensional separable Hilbert space X, we study the realizations of Ornstein–Uhlenbeck evolution operators Ps,t in the spaces Lp(X,γt), {γt}t∈R being a suitable evolution system of measures for Ps,t. We prove hypercontractivity results, relying on suitable Log-Sobolev estimates. Among the examples, we consider the transition evolution operator associated with a non-autonomous stochastic parabolic PDE.
Log-Sobolev inequalities and hypercontractivity for Ornstein – Uhlenbeck evolution operators in infinite dimension
Bignamini D. A.;De Fazio P.
2024-01-01
Abstract
In an infinite-dimensional separable Hilbert space X, we study the realizations of Ornstein–Uhlenbeck evolution operators Ps,t in the spaces Lp(X,γt), {γt}t∈R being a suitable evolution system of measures for Ps,t. We prove hypercontractivity results, relying on suitable Log-Sobolev estimates. Among the examples, we consider the transition evolution operator associated with a non-autonomous stochastic parabolic PDE.File | Dimensione | Formato | |
---|---|---|---|
LogSobolev-inequalities-and-hypercontractivity-for-Ornstein--Uhlenbeck-evolution-operators-in-infinite-dimensionJournal-of-Evolution-Equations.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
810.75 kB
Formato
Adobe PDF
|
810.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.