In an infinite-dimensional separable Hilbert space X, we study the realizations of Ornstein-Uhlenbeck evolution operators Ps,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{s,t}$$\end{document} in the spaces Lp(X,gamma t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p(X,\gamma _t)$$\end{document}, {gamma t}t is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\gamma _t\}_{t\in \mathbb {R}}$$\end{document} being a suitable evolution system of measures for Ps,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{s,t}$$\end{document}. We prove hypercontractivity results, relying on suitable Log-Sobolev estimates. Among the examples, we consider the transition evolution operator associated with a non-autonomous stochastic parabolic PDE.
Log-Sobolev inequalities and hypercontractivity for Ornstein – Uhlenbeck evolution operators in infinite dimension
Bignamini D. A.;De Fazio P.
2024-01-01
Abstract
In an infinite-dimensional separable Hilbert space X, we study the realizations of Ornstein-Uhlenbeck evolution operators Ps,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{s,t}$$\end{document} in the spaces Lp(X,gamma t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p(X,\gamma _t)$$\end{document}, {gamma t}t is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\gamma _t\}_{t\in \mathbb {R}}$$\end{document} being a suitable evolution system of measures for Ps,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{s,t}$$\end{document}. We prove hypercontractivity results, relying on suitable Log-Sobolev estimates. Among the examples, we consider the transition evolution operator associated with a non-autonomous stochastic parabolic PDE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.