A new nanodevice based on gold nanoparticles (AuNPs) capped with poly(diethylvinylphosphonate) (PDEVP) has been synthesized, showing interesting photophysical and thermoresponsive properties. The synthesis involves a properly designed Yttriocene catalyst coordinating the vinyl-lutidine (VL) initiator active in diethyl vinyl phosphonate polymerization. The unsaturated PDEVP chain ending was thioacetylated, deacetylated, and reacted with tetrachloroauric acid and sodium borohydride to form PDEVP-VL-capped AuNPs. The NMR, UV–Vis, and ESI-MS characterization of the metal nanoparticles confirmed the formation of the synthetic intermediates and the expected colloidal systems. AuNPs of subnanometric size were determined by WAXD and UV–Vis analysis. UV–Vis and fluorescence analysis confirmed the effective anchoring of the thiolated PDEVP to AuNPs. The formation of 50–200 nm globular structures was assessed by SEM and AFM microscopy in solid state and confirmed by DLS in aqueous dispersion. Hydrodynamic radius studies showed colloidal contraction with temperature, demonstrating thermoresponsive behavior. These properties suggest potential biomedical applications for the photoablation of malignant cells or controlled drug delivery induced by light or heat for the novel PDEVP-capped AuNP systems.

Thermo- and Photoresponsive Smart Nanomaterial Based on Poly(diethyl vinyl phosphonate)-Capped Gold Nanoparticles

Della Monica, Francesco;
2024-01-01

Abstract

A new nanodevice based on gold nanoparticles (AuNPs) capped with poly(diethylvinylphosphonate) (PDEVP) has been synthesized, showing interesting photophysical and thermoresponsive properties. The synthesis involves a properly designed Yttriocene catalyst coordinating the vinyl-lutidine (VL) initiator active in diethyl vinyl phosphonate polymerization. The unsaturated PDEVP chain ending was thioacetylated, deacetylated, and reacted with tetrachloroauric acid and sodium borohydride to form PDEVP-VL-capped AuNPs. The NMR, UV–Vis, and ESI-MS characterization of the metal nanoparticles confirmed the formation of the synthetic intermediates and the expected colloidal systems. AuNPs of subnanometric size were determined by WAXD and UV–Vis analysis. UV–Vis and fluorescence analysis confirmed the effective anchoring of the thiolated PDEVP to AuNPs. The formation of 50–200 nm globular structures was assessed by SEM and AFM microscopy in solid state and confirmed by DLS in aqueous dispersion. Hydrodynamic radius studies showed colloidal contraction with temperature, demonstrating thermoresponsive behavior. These properties suggest potential biomedical applications for the photoablation of malignant cells or controlled drug delivery induced by light or heat for the novel PDEVP-capped AuNP systems.
2024
2024
https://doi.org/10.3390/nano14191589
thermoresponsive; photoresponsive; gold nanoparticles; LCST; FRET; smart; nanomaterial; poly(phosphonate); group transfer polymerization; yttrium
Buonerba, Antonio; Lapenta, Rosita; Della Monica, Francesco; Piacentini, Roberto; Baldino, Lucia; Scognamiglio, Maria Rosa; Speranza, Vito; Milione, S...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2180951
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact