Increasing numbers of reports have revealed novel catalytically active cryptic guanylate cyclases (GCs) and adenylate cyclases (ACs) operating within complex proteins in prokaryotes and eukaryotes. Here we review the structural and functional aspects of some of these cyclases and provide examples that illustrate their roles in the regulation of the intramolecular functions of complex proteins, such as the phytosulfokine receptor (PSKR), and reassess their contribution to signal generation and tuning. Another multidomain protein, Arabidopsis thaliana K+ uptake permease (AtKUP5), also harbors multiple catalytically active sites including an N-terminal AC and C-terminal phosphodiesterase (PDE) with an abscisic acid-binding site. We argue that this architecture may enable the fine-tuning and/or sensing of K+ flux and integrate hormone responses to cAMP homeostasis. We also discuss how searches with motifs based on conserved amino acids in catalytic centers led to the discovery of GCs and ACs and propose how this approach can be applied to discover hitherto masked active sites in bacterial, fungal, and animal proteomes. Finally, we show that motif searches are a promising approach to discover ancient biological functions such as hormone or gas binding.
Moonlighting Crypto-Enzymes and Domains as Ancient and Versatile Signaling Devices
Domingo G.;Vannini C.;Bracale M.;
2024-01-01
Abstract
Increasing numbers of reports have revealed novel catalytically active cryptic guanylate cyclases (GCs) and adenylate cyclases (ACs) operating within complex proteins in prokaryotes and eukaryotes. Here we review the structural and functional aspects of some of these cyclases and provide examples that illustrate their roles in the regulation of the intramolecular functions of complex proteins, such as the phytosulfokine receptor (PSKR), and reassess their contribution to signal generation and tuning. Another multidomain protein, Arabidopsis thaliana K+ uptake permease (AtKUP5), also harbors multiple catalytically active sites including an N-terminal AC and C-terminal phosphodiesterase (PDE) with an abscisic acid-binding site. We argue that this architecture may enable the fine-tuning and/or sensing of K+ flux and integrate hormone responses to cAMP homeostasis. We also discuss how searches with motifs based on conserved amino acids in catalytic centers led to the discovery of GCs and ACs and propose how this approach can be applied to discover hitherto masked active sites in bacterial, fungal, and animal proteomes. Finally, we show that motif searches are a promising approach to discover ancient biological functions such as hormone or gas binding.File | Dimensione | Formato | |
---|---|---|---|
ijms-25-09535-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.