We introduce spin-harmonic structures, a class of geometric structures on Riemannian manifolds of low dimension which are defined by a harmonic unit-length spinor. Such structures are related to SU(2) (dim = 4, 5), SU(3) (dim = 6) and G2 (dim = 7) structures; in dimension 8, a spin-harmonic structure is equivalent to a balanced Spin(7) structure. As an application, we obtain examples of compact 8-manifolds endowed with non-integrable Spin(7) structures of balanced type.

Spin-harmonic structures and nilmanifolds

Bazzoni G.;
2024-01-01

Abstract

We introduce spin-harmonic structures, a class of geometric structures on Riemannian manifolds of low dimension which are defined by a harmonic unit-length spinor. Such structures are related to SU(2) (dim = 4, 5), SU(3) (dim = 6) and G2 (dim = 7) structures; in dimension 8, a spin-harmonic structure is equivalent to a balanced Spin(7) structure. As an application, we obtain examples of compact 8-manifolds endowed with non-integrable Spin(7) structures of balanced type.
2024
2024
Bazzoni, G.; Martin-Merchan, L.; Munoz, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2182894
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact