The disposal of single-use plastics, particularly polyethylene terephthalate (PET), represents a major environmental issue due to its persistence and contribution to microplastic pollution. Advances in biotechnology, including the discovery of PET-hydrolyzing enzymes (PHEs), offer promising approaches to converting PET waste into valuable chemicals within the concept of circular bioeconomy. The final goal of this PhD project was to engineer an E. coli strain capable of utilizing the products obtained from PET enzymatic degradation through a properly designed artificial enzymatic cascade. Specifically, the objective was to valorize the released monomer terephthalic acid (TPA) by converting it into pyruvate, a key intermediate for synthesizing high-value compounds such as amino acids. Initially, each step of the proposed pathway was evaluated individually to overcome potential bottlenecks and to define a set of optimal and consistent reaction conditions for all sections. Furthermore, a step-by-step evaluation of the process’s compatibility with the whole-cell approach was carried out. Subsequently, a series of optimization steps led to the development of a functional process for producing pyruvate directly from TPA derived from enzymatically degraded post-consumer PET waste. Finally, the process was successfully scaled up, achieving a process yield of 77% in terms of mgpyruvate/mgTPA (i.e., 72% molar yield) and an overall yield of 34% in terms of mgpyruvate/mgPET (i.e., 41% molar yield) under mild conditions1. These results demonstrate the potential to valorize post-consumer PET waste and underscore this process’s relevance within pyruvate production technologies.
L’accumulo delle plastiche monouso, ed in particolare del polietilene tereftalato (PET), è uno dei temi ambientali più importanti che la nostra società si trova ad affrontare. L’inerzia chimica e l’accumulo di questi materiali, anche sottoforma di microplastiche, nell’ambiente rappresenta uno dei maggiori problemi ambientali. La continua evoluzione delle biotecnologie, inclusa la scoperta di enzimi capaci di degradare il PET, offre strumenti innovativi per trasformare e valorizzare i rifiuti plastici di PET in prodotti chimici di alto valore, in un’ottica di bioeconomia circolare. Questo progetto di dottorato mira ad ingegnerizzare un ceppo di E. coli attraverso la progettazione e l’inserimento di una cascata enzimatica artificiale progettata appositamente per utilizzare i prodotti derivati dalla degradazione enzimatica del PET. In particolare, l’obiettivo è la valorizzazione dell’acido tereftalico (TPA), uno dei monomeri rilasciati, convertendolo in piruvato, che è un intermedio chiave per la sintesi di composti di alto valore aggiunto come gli amminoacidi. Il primo passo è stata l’ottimizzazione di ogni sezione della cascata enzimatica per individuare e risolvere eventuali passaggi limitanti, definendo allo stesso tempo un insieme di condizioni di reazione comuni e adatte a tutte le sezioni. Contemporaneamente è stata anche verificata la compatibilità di ogni sezione con l’approccio whole-cell. Successivamente, tramite un approccio iterativo, si è arrivati alla definizione di un processo funzionale e ottimizzato per la produzione di piruvato direttamente dal TPA derivante dalla degradazione enzimatica del PET. Lo scale-up del processo ha raggiunto una resa di processo del 77% in mgpiruvato/mgTPA (resa molare del 72%) e una resa complessiva del 34% in mgpiruvato/mgPET (resa molare del 41%) in condizioni di reazione moderate (30 °C). Questi risultati dimostrano l’alto potenziale economico dei rifiuti di PET e la concreta possibilità per la loro valorizzazione.
Systems Biotechnology: production of high-value added compounds from renewable resources / Davide Miani , 2025 Feb 21. 37. ciclo, Anno Accademico 2023/2024.
Systems Biotechnology: production of high-value added compounds from renewable resources
MIANI, DAVIDE
2025-02-21
Abstract
The disposal of single-use plastics, particularly polyethylene terephthalate (PET), represents a major environmental issue due to its persistence and contribution to microplastic pollution. Advances in biotechnology, including the discovery of PET-hydrolyzing enzymes (PHEs), offer promising approaches to converting PET waste into valuable chemicals within the concept of circular bioeconomy. The final goal of this PhD project was to engineer an E. coli strain capable of utilizing the products obtained from PET enzymatic degradation through a properly designed artificial enzymatic cascade. Specifically, the objective was to valorize the released monomer terephthalic acid (TPA) by converting it into pyruvate, a key intermediate for synthesizing high-value compounds such as amino acids. Initially, each step of the proposed pathway was evaluated individually to overcome potential bottlenecks and to define a set of optimal and consistent reaction conditions for all sections. Furthermore, a step-by-step evaluation of the process’s compatibility with the whole-cell approach was carried out. Subsequently, a series of optimization steps led to the development of a functional process for producing pyruvate directly from TPA derived from enzymatically degraded post-consumer PET waste. Finally, the process was successfully scaled up, achieving a process yield of 77% in terms of mgpyruvate/mgTPA (i.e., 72% molar yield) and an overall yield of 34% in terms of mgpyruvate/mgPET (i.e., 41% molar yield) under mild conditions1. These results demonstrate the potential to valorize post-consumer PET waste and underscore this process’s relevance within pyruvate production technologies.File | Dimensione | Formato | |
---|---|---|---|
PDF_TESI_DM_DOPO.pdf
embargo fino al 18/03/2027
Descrizione: Systems Biotechnology: production of high-value added compounds from renewable resources
Tipologia:
Tesi di dottorato
Licenza:
Copyright dell'editore
Dimensione
20.39 MB
Formato
Adobe PDF
|
20.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.