State discrimination is a key challenge in the implementation of quantum communication protocols. Most optical communication protocols rely on either coherent states of light or fragile single-photon states, making it often difficult to achieve robustness and security simultaneously. In this work, we propose a hybrid strategy that operates in the mesoscopic intensity regime, leveraging robust quantum states of light. Our approach combines classical and quantum features: reliable state discrimination based on a classical property of light, and security stemming from nonclassical correlations. Specifically, the receiver uses photon-number-resolving detectors to access the mean photon number of the binary thermal signals encoding the information. The communication channel exploits twin-beam states, inherently sensitive to eavesdropping attacks, to provide a layer of security. This strategy is scalable, allowing for straightforward extension to more complex signal alphabets, and offers a promising route for robust and secure quantum communication in the mesoscopic intensity domain.

Hybrid discrimination strategy in quantum communication based on photon-number-resolving detectors and mesoscopic twin-beam states

Razzoli L.;Allevi A.
2025-01-01

Abstract

State discrimination is a key challenge in the implementation of quantum communication protocols. Most optical communication protocols rely on either coherent states of light or fragile single-photon states, making it often difficult to achieve robustness and security simultaneously. In this work, we propose a hybrid strategy that operates in the mesoscopic intensity regime, leveraging robust quantum states of light. Our approach combines classical and quantum features: reliable state discrimination based on a classical property of light, and security stemming from nonclassical correlations. Specifically, the receiver uses photon-number-resolving detectors to access the mean photon number of the binary thermal signals encoding the information. The communication channel exploits twin-beam states, inherently sensitive to eavesdropping attacks, to provide a layer of security. This strategy is scalable, allowing for straightforward extension to more complex signal alphabets, and offers a promising route for robust and secure quantum communication in the mesoscopic intensity domain.
2025
2025
2025
10
4
1
13
13
045036
ELETTRONICO
Esperti anonimi
https://iopscience.iop.org/article/10.1088/2058-9565/ae05c3/
Inglese
twin-beam states of light; state discrimination; mesoscopic intensity regime; photon-number-resolving detectors
no
262
Razzoli, L.; Pozzoli, A.; Allevi, A.
open
Articoli su Riviste::Articolo su Rivista
3
info:eu-repo/semantics/article
File in questo prodotto:
File Dimensione Formato  
Razzoli_2025_Quantum_Sci._Technol._10_045036.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2198111
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact