CD4+CD25hiFoxP3+ regulatory T cells (Treg cells) are key controllers of immune self-tolerance, and their suppressive function is impaired in people with relapsing-remitting multiple sclerosis (pwRR-MS). Because the mechanisms underlying this condition are still ill-defined, we investigated the role of Treg cell-derived extracellular vesicles (Treg-EVs) in Treg cell dysfunction observed in pwRR-MS. We found that Treg-EVs from healthy individuals inhibit CD4+ conventional T (Tconv) cells by shuttling miR-142-3p from the Treg cell to the Tconv cell. There, miR-142-3p down-regulated mRNAs necessary for Tconv cell growth and effector functions, such as the redox controller cystine carrier SLC7A11. However, Treg cells from pwRR-MS released EVs containing reduced amounts of miR-142-3p, resulting in impaired suppressive function. Furthermore, Treg-EV miR-142-3p inversely correlated with the disability score and gadolinium-enhancing lesions in pwRR-MS. Together, our results elucidate a molecular mechanism involving miR-142-3p shuttled by Treg-EVs in the control of immune self-tolerance and unveil its pathogenetic implications in human autoimmunity.

MicroRNA-142-3p shuttling in extracellular vesicles marks regulatory T cell dysfunction in multiple sclerosis

D'Antona P.
Investigation
;
Campomenosi P.
Investigation
;
2025-01-01

Abstract

CD4+CD25hiFoxP3+ regulatory T cells (Treg cells) are key controllers of immune self-tolerance, and their suppressive function is impaired in people with relapsing-remitting multiple sclerosis (pwRR-MS). Because the mechanisms underlying this condition are still ill-defined, we investigated the role of Treg cell-derived extracellular vesicles (Treg-EVs) in Treg cell dysfunction observed in pwRR-MS. We found that Treg-EVs from healthy individuals inhibit CD4+ conventional T (Tconv) cells by shuttling miR-142-3p from the Treg cell to the Tconv cell. There, miR-142-3p down-regulated mRNAs necessary for Tconv cell growth and effector functions, such as the redox controller cystine carrier SLC7A11. However, Treg cells from pwRR-MS released EVs containing reduced amounts of miR-142-3p, resulting in impaired suppressive function. Furthermore, Treg-EV miR-142-3p inversely correlated with the disability score and gadolinium-enhancing lesions in pwRR-MS. Together, our results elucidate a molecular mechanism involving miR-142-3p shuttled by Treg-EVs in the control of immune self-tolerance and unveil its pathogenetic implications in human autoimmunity.
2025
2025
De Rosa, G.; Russo, C.; Garavelli, S.; Di Silvestre, D.; Spatocco, I.; Mele, G.; Rocca, C. L.; Colamatteo, A.; Carbone, F.; Fusco, C.; Passaro, F.; Ca...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2198991
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact