Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS - Institutional Research Information System IRIS è il sistema di gestione integrata dei dati della ricerca (persone, progetti, pubblicazioni, attività) adottato dall'Università degli Studi dell’Insubria.
IRInSubria - Institutional Repository Insubria IRInSubria raccoglie, conserva, documenta e dissemina le informazioni sulla produzione scientifica dell'Università degli Studi dell’Insubria anche ai fini della valutazione della ricerca.
Background: Lower respiratory infections (LRIs) remain the world's leading infectious cause of death. This analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 provides global, regional, and national estimates of LRI incidence, mortality, and disability-adjusted life-years (DALYs), with attribution to 26 pathogens, including 11 newly modelled pathogens, across 204 countries and territories from 1990 to 2023. With new data and revised modelling techniques, these estimates serve as an update and expansion to GBD 2021. Through these estimates, we also aimed to assess progress towards the 2025 Global Action Plan for the Prevention and Control of Pneumonia and Diarrhoea (GAPPD) target for pneumonia mortality in children younger than 5 years. Methods: Mortality from LRIs, defined as physician-diagnosed pneumonia or bronchiolitis, was estimated using the Cause of Death Ensemble model with data from vital registration, verbal autopsy, surveillance, and minimally invasive tissue sampling. The Bayesian meta-regression tool DisMod-MR 2.1 was used to model overall morbidity due to LRIs. DALYs were calculated as the sum of years of life lost (YLLs) and years lived with disability (YLDs) for all locations, years, age groups, and sexes. We modelled pathogen-specific case-fatality ratios (CFRs) for each age group and location using splined binomial regression to create internally consistent estimates of incidence and mortality proportions attributable to viral, fungal, parasitic, and bacterial pathogens. Progress was assessed towards the GAPPD target of less than three deaths from pneumonia per 1000 livebirths, which is roughly equivalent to a mortality rate of less than 60 deaths per 100 000 children younger than 5 years. Findings: In 2023, LRIs were responsible for 2·50 million (95% uncertainty interval [UI] 2·24-2·81) deaths and 98·7 million (87·7-112) DALYs, with children younger than 5 years and adults aged 70 years and older carrying the highest burden. LRI mortality in children younger than 5 years fell by 33·4% (10·4-47·4) since 2010, with a global mortality rate of 94·8 (75·6-116·4) per 100 000 person-years in 2023. Among adults aged 70 years and older, the burden remained substantial with only marginal declines since 2010. A mortality rate of less than 60 deaths per 100 000 for children younger than 5 years was met by 129 of the 204 modelled countries in 2023. At a super-regional level, sub-Saharan Africa had an aggregate mortality rate in children younger than 5 years (hereafter referred to as under-5 mortality rate) furthest from the GAPPD target. Streptococcus pneumoniae continued to account for the largest number of LRI deaths globally (634 000 [95% UI 565 000-721 000] deaths or 25·3% [24·5-26·1] of all LRI deaths), followed by Staphylococcus aureus (271 000 [243 000-298 000] deaths or 10·9% [10·3-11·3]), and Klebsiella pneumoniae (228 000 [204 000-261 000] deaths or 9·1% [8·8-9·5]). Among pathogens newly modelled in this study, non-tuberculous mycobacteria (responsible for 177 000 [95% UI 155 000-201 000] deaths) and Aspergillus spp (responsible for 67 800 [59 900-75 900] deaths) emerged as important contributors. Altogether, the 11 newly modelled pathogens accounted for approximately 22% of LRI deaths. Interpretation: This comprehensive analysis underscores both the gains achieved through vaccination and the challenges that remain in controlling the LRI burden globally. Furthermore, it demonstrates persistent disparities in disease burden, with the highest mortality rates concentrated in countries in sub-Saharan Africa. Globally, as well as in these high-burden locations, the under-5 LRI mortality rate remains well above the GAPPD target. Progress towards this target requires equitable access to vaccines and preventive therapies-including newer interventions such as respiratory syncytial virus monoclonal antibodies-and health systems capable of early diagnosis and treatment. Expanding surveillance of emerging pathogens, strengthening adult immunisation programmes, and combating vaccine hesitancy are also crucial. As the global population ages, the dual challenge of sustaining gains in child survival while addressing the rising vulnerability in older adults will shape future pneumonia control strategies. Funding: Gates Foundation.
Global burden of lower respiratory infections and aetiologies, 1990-2023: a systematic analysis for the Global Burden of Disease Study 2023
Background: Lower respiratory infections (LRIs) remain the world's leading infectious cause of death. This analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 provides global, regional, and national estimates of LRI incidence, mortality, and disability-adjusted life-years (DALYs), with attribution to 26 pathogens, including 11 newly modelled pathogens, across 204 countries and territories from 1990 to 2023. With new data and revised modelling techniques, these estimates serve as an update and expansion to GBD 2021. Through these estimates, we also aimed to assess progress towards the 2025 Global Action Plan for the Prevention and Control of Pneumonia and Diarrhoea (GAPPD) target for pneumonia mortality in children younger than 5 years. Methods: Mortality from LRIs, defined as physician-diagnosed pneumonia or bronchiolitis, was estimated using the Cause of Death Ensemble model with data from vital registration, verbal autopsy, surveillance, and minimally invasive tissue sampling. The Bayesian meta-regression tool DisMod-MR 2.1 was used to model overall morbidity due to LRIs. DALYs were calculated as the sum of years of life lost (YLLs) and years lived with disability (YLDs) for all locations, years, age groups, and sexes. We modelled pathogen-specific case-fatality ratios (CFRs) for each age group and location using splined binomial regression to create internally consistent estimates of incidence and mortality proportions attributable to viral, fungal, parasitic, and bacterial pathogens. Progress was assessed towards the GAPPD target of less than three deaths from pneumonia per 1000 livebirths, which is roughly equivalent to a mortality rate of less than 60 deaths per 100 000 children younger than 5 years. Findings: In 2023, LRIs were responsible for 2·50 million (95% uncertainty interval [UI] 2·24-2·81) deaths and 98·7 million (87·7-112) DALYs, with children younger than 5 years and adults aged 70 years and older carrying the highest burden. LRI mortality in children younger than 5 years fell by 33·4% (10·4-47·4) since 2010, with a global mortality rate of 94·8 (75·6-116·4) per 100 000 person-years in 2023. Among adults aged 70 years and older, the burden remained substantial with only marginal declines since 2010. A mortality rate of less than 60 deaths per 100 000 for children younger than 5 years was met by 129 of the 204 modelled countries in 2023. At a super-regional level, sub-Saharan Africa had an aggregate mortality rate in children younger than 5 years (hereafter referred to as under-5 mortality rate) furthest from the GAPPD target. Streptococcus pneumoniae continued to account for the largest number of LRI deaths globally (634 000 [95% UI 565 000-721 000] deaths or 25·3% [24·5-26·1] of all LRI deaths), followed by Staphylococcus aureus (271 000 [243 000-298 000] deaths or 10·9% [10·3-11·3]), and Klebsiella pneumoniae (228 000 [204 000-261 000] deaths or 9·1% [8·8-9·5]). Among pathogens newly modelled in this study, non-tuberculous mycobacteria (responsible for 177 000 [95% UI 155 000-201 000] deaths) and Aspergillus spp (responsible for 67 800 [59 900-75 900] deaths) emerged as important contributors. Altogether, the 11 newly modelled pathogens accounted for approximately 22% of LRI deaths. Interpretation: This comprehensive analysis underscores both the gains achieved through vaccination and the challenges that remain in controlling the LRI burden globally. Furthermore, it demonstrates persistent disparities in disease burden, with the highest mortality rates concentrated in countries in sub-Saharan Africa. Globally, as well as in these high-burden locations, the under-5 LRI mortality rate remains well above the GAPPD target. Progress towards this target requires equitable access to vaccines and preventive therapies-including newer interventions such as respiratory syncytial virus monoclonal antibodies-and health systems capable of early diagnosis and treatment. Expanding surveillance of emerging pathogens, strengthening adult immunisation programmes, and combating vaccine hesitancy are also crucial. As the global population ages, the dual challenge of sustaining gains in child survival while addressing the rising vulnerability in older adults will shape future pneumonia control strategies. Funding: Gates Foundation.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2202391
Attenzione
L'Ateneo sottopone a validazione solo i file PDF allegati
Citazioni
ND
ND
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.