Corrosion casting combined with scanning electron microscopy (SEM) has been widely used to study the morphofunctional aspects of microeirculation in many organs. In this study, we present an optimization of the corrosion casting (CC) technique associating it with NaOH 1 N maceration method to obtain a clear visualization of the relationships existing between the microvascular architecture of an organ and its extracellular matrix. Briefly, experiments were performed macerating the tissue previously injected with a low viscosity acrylic resin in 1 N NaOH and then observing it at SEM. In this study, we present an application of this technique to better evaluate the extracellular components of the vascular wall in medium-sized and capillary vessels both in skin and in kidney. The results obtained yielded clear images of the three-dimensional layout of medium-sized and capillary vessels in comparison with the extracellular environment. Furthermore, detailed information was obtained on the three-dimensional layout of fibers constituting the walls of venules, arterioles, and capillaries. In addition, the tubular collagenic structures surrounding the excretory tubules of the kidney and the dermal glands of the skin were depicted and their relationships with their vascular supply described in detail.
A new method for the joint visualization of vascular structures and connective tissues: corrosion casting and 1 N NaOH maceration.
DELL'ORBO, CARLO;
2006-01-01
Abstract
Corrosion casting combined with scanning electron microscopy (SEM) has been widely used to study the morphofunctional aspects of microeirculation in many organs. In this study, we present an optimization of the corrosion casting (CC) technique associating it with NaOH 1 N maceration method to obtain a clear visualization of the relationships existing between the microvascular architecture of an organ and its extracellular matrix. Briefly, experiments were performed macerating the tissue previously injected with a low viscosity acrylic resin in 1 N NaOH and then observing it at SEM. In this study, we present an application of this technique to better evaluate the extracellular components of the vascular wall in medium-sized and capillary vessels both in skin and in kidney. The results obtained yielded clear images of the three-dimensional layout of medium-sized and capillary vessels in comparison with the extracellular environment. Furthermore, detailed information was obtained on the three-dimensional layout of fibers constituting the walls of venules, arterioles, and capillaries. In addition, the tubular collagenic structures surrounding the excretory tubules of the kidney and the dermal glands of the skin were depicted and their relationships with their vascular supply described in detail.File | Dimensione | Formato | |
---|---|---|---|
micr_res_tech_2006.pdf
non disponibili
Descrizione: PDF editoriale
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
436.18 kB
Formato
Adobe PDF
|
436.18 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.