We study the stability of quantum motion of classically regular systems in the presence of small perturbations. On the basis of a uniform semiclassical theory we derive the fidelity decay which displays a quite complex behavior, from Gaussian to power law decay t−α, with 1⩽α⩽2. Semiclassical estimates are given for the time scales separating the different decaying regions, and numerical results are presented which confirm our theoretical predictions.

Stability of quantum motion in regular systems: a uniform semiclassical approach

CASATI, GIULIO;
2007-01-01

Abstract

We study the stability of quantum motion of classically regular systems in the presence of small perturbations. On the basis of a uniform semiclassical theory we derive the fidelity decay which displays a quite complex behavior, from Gaussian to power law decay t−α, with 1⩽α⩽2. Semiclassical estimates are given for the time scales separating the different decaying regions, and numerical results are presented which confirm our theoretical predictions.
2007
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.75.016201
WEN GE, Wang; Casati, Giulio; B., Li
File in questo prodotto:
File Dimensione Formato  
PhysRevE.75.016201.pdf

accesso aperto

Descrizione: PDF editoriale
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 902.84 kB
Formato Adobe PDF
902.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1673589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 24
social impact