A multidisciplinary study was carried out to understand the interactions between biotic and abiotic processes in granite weathering in ice-free areas of Northern Victoria Land, Antarctica. Examples of tafoni, pits and grooves were analyzed, focusing on their morphometry, infills, weathering rind types and vegetation patterns. Surface and subsurface temperatures and incoming radiation were measured to characterize microclimatic conditions. In addition, microscopic, SEM and X-ray diffraction analyses of granite were carried out. These analyses indicate that, under present conditions, mechanical weathering is the main process active in the formation of tafoni, which post-date pits and grooves. In these forms, granular disintegration is mainly induced by chasmoendolithic lichens, salt and thermal stress associated with the dilatation coefficients of different granite-forming minerals. The overall morphology of pits and grooves indicates that they originate from water erosion. In the former, mechanical weathering prevails, caused by epilithic lichens, by freeze-thaw events, and by salt, while only the first two processes are active in the grooves. The intensity of these processes is less effective than in tafoni and on the outer surfaces, suggesting that pits and grooves are inherited features, possibly generated in the same way as landforms occurring on granite in the humid tropics

Biotic and Abiotic Processes on Granite Weathering Landforms in a Cryotic Environment, Northern Victoria Land, Antarctica

GUGLIELMIN, MAURO;CANNONE, NICOLETTA;
2005-01-01

Abstract

A multidisciplinary study was carried out to understand the interactions between biotic and abiotic processes in granite weathering in ice-free areas of Northern Victoria Land, Antarctica. Examples of tafoni, pits and grooves were analyzed, focusing on their morphometry, infills, weathering rind types and vegetation patterns. Surface and subsurface temperatures and incoming radiation were measured to characterize microclimatic conditions. In addition, microscopic, SEM and X-ray diffraction analyses of granite were carried out. These analyses indicate that, under present conditions, mechanical weathering is the main process active in the formation of tafoni, which post-date pits and grooves. In these forms, granular disintegration is mainly induced by chasmoendolithic lichens, salt and thermal stress associated with the dilatation coefficients of different granite-forming minerals. The overall morphology of pits and grooves indicates that they originate from water erosion. In the former, mechanical weathering prevails, caused by epilithic lichens, by freeze-thaw events, and by salt, while only the first two processes are active in the grooves. The intensity of these processes is less effective than in tafoni and on the outer surfaces, suggesting that pits and grooves are inherited features, possibly generated in the same way as landforms occurring on granite in the humid tropics
2005
cold-climate weathering; Tafoni; Antarctica
Guglielmin, Mauro; Cannone, Nicoletta; Strini, A; Lewkowicz, A.
File in questo prodotto:
File Dimensione Formato  
Guglielmin_Cannone_etc_PPP_2005.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1708439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 37
social impact