the guinea pig colon, chronic sympathetic denervation entails supersensitivity to inhibitory μ-opioid agents modulating cholinergic neurons. The mechanism underlying such adaptive change has not yet been unravelled, although protein kinase C (PKC) may be involved. A previous study indirectly demonstrated that activation of μ-opioid receptors on myenteric neurons facilitates PKC activity. Such coupling may counteract the inhibitory action of μ-opioid agents on acetylcholine overflow, since PKC, per se, increases this parameter. After chronic sympathetic denervation such restraint abates, representing a possible mechanism for development of supersensitivity to μ-opioid agents. In the present study, this hypothesis was further investigated. After chronic sympathetic denervation, Ca2+-dependent PKC activity was reduced in colonic myenteric plexus synaptosomes. The μ-opioid agent, DAMGO, increased Ca2+-dependent PKC activity in synaptosomes obtained from normal, but not from denervated animals. In myenteric synaptosomes obtained from this experimental group, protein levels of Ca2+-dependent PKC isoforms βI, βII and γ decreased, whereas α levels increased. In whole-mount preparations, the four Ca2+-dependent PKC isoforms co-localized with μ-opioid receptors on subpopulations of colonic myenteric neurons. The percentage of neurons staining for PKCβII, as well as the number of μ-opioid receptor-positive neurons staining for PKCβII, decreased in denervated preparations. The same parameters related to PKCα, βI or γ remained unchanged. Overall, the present data strengthen the concept that μ-opioid receptors located on myenteric neurons are coupled to Ca2+-dependent PKCs. After chronic sympathetic denervation, a reduced efficiency of this coupling may predominantly involve PKCβII, although also PKCβI and γ, but not PKCα, may be implicated.

Involvement of Ca2+-dependent PKCs in the adaptive changes of mu-opioid pathways to sympathetic denervation in the guinea pig colon.

GIARONI, CRISTINA;LECCHINI, SERGIO;
2009

Abstract

the guinea pig colon, chronic sympathetic denervation entails supersensitivity to inhibitory μ-opioid agents modulating cholinergic neurons. The mechanism underlying such adaptive change has not yet been unravelled, although protein kinase C (PKC) may be involved. A previous study indirectly demonstrated that activation of μ-opioid receptors on myenteric neurons facilitates PKC activity. Such coupling may counteract the inhibitory action of μ-opioid agents on acetylcholine overflow, since PKC, per se, increases this parameter. After chronic sympathetic denervation such restraint abates, representing a possible mechanism for development of supersensitivity to μ-opioid agents. In the present study, this hypothesis was further investigated. After chronic sympathetic denervation, Ca2+-dependent PKC activity was reduced in colonic myenteric plexus synaptosomes. The μ-opioid agent, DAMGO, increased Ca2+-dependent PKC activity in synaptosomes obtained from normal, but not from denervated animals. In myenteric synaptosomes obtained from this experimental group, protein levels of Ca2+-dependent PKC isoforms βI, βII and γ decreased, whereas α levels increased. In whole-mount preparations, the four Ca2+-dependent PKC isoforms co-localized with μ-opioid receptors on subpopulations of colonic myenteric neurons. The percentage of neurons staining for PKCβII, as well as the number of μ-opioid receptor-positive neurons staining for PKCβII, decreased in denervated preparations. The same parameters related to PKCα, βI or γ remained unchanged. Overall, the present data strengthen the concept that μ-opioid receptors located on myenteric neurons are coupled to Ca2+-dependent PKCs. After chronic sympathetic denervation, a reduced efficiency of this coupling may predominantly involve PKCβII, although also PKCβI and γ, but not PKCα, may be implicated.
Ca2+-dependent PKC m-Opioid receptor Sympathetic denervation Changes in sensitivity Myenteric plexus
File in questo prodotto:
File Dimensione Formato  
denervation-PKC-colon-2009.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 425.41 kB
Formato Adobe PDF
425.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/1717010
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact