Variational Monte Carlo, diffusion Monte Carlo, and stereographic projection path integral simulations are performed on eight selected species from the (NH(3))(n), (ND(3))(n), (NH(2)D)(n), and (NH(3))(n-1)(ND(3)) clusters. Each monomer is treated as a rigid body with the rotation spaces mapped by the stereographic projection coordinates. We compare the energy obtained from path integral simulations at several low temperatures with those obtained by diffusion Monte Carlo, for two dimers, and we find that at 4 K, the fully deuterated dimer energy is in excellent agreement with the ground state energy of the same. The ground state wavefunction for the (NH(3))(2-5) clusters is predominantly localized in the global minimum of the potential energy. In all simulations of mixed isotopic substitutions, we find that the heavier isotope is almost exclusively the participant in the hydrogen bond. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506027]
Quantum Monte Carlo simulations of selected ammonia clusters (n=2-5): Isotope effects on the ground state of typical hydrogen bonded systems
MELLA, MASSIMO
2010-01-01
Abstract
Variational Monte Carlo, diffusion Monte Carlo, and stereographic projection path integral simulations are performed on eight selected species from the (NH(3))(n), (ND(3))(n), (NH(2)D)(n), and (NH(3))(n-1)(ND(3)) clusters. Each monomer is treated as a rigid body with the rotation spaces mapped by the stereographic projection coordinates. We compare the energy obtained from path integral simulations at several low temperatures with those obtained by diffusion Monte Carlo, for two dimers, and we find that at 4 K, the fully deuterated dimer energy is in excellent agreement with the ground state energy of the same. The ground state wavefunction for the (NH(3))(2-5) clusters is predominantly localized in the global minimum of the potential energy. In all simulations of mixed isotopic substitutions, we find that the heavier isotope is almost exclusively the participant in the hydrogen bond. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506027]File | Dimensione | Formato | |
---|---|---|---|
DMC_ammonia_cluster.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.