Bone Tissue Engineering (BTE) and Dental Implantology (DI) require the integration of implanted structures, with well characterized surfaces, in bone. In this work we have challenged acid-etched titanium (AET) and Laser Sintered Titanium (LST) surfaces with either human osteoblasts or stem cells from human dental pulps (DPSCs), to understand their osteointegration and clinical use capability of derived implants. DPSCs and human osteoblasts were challenged with the two titanium surfaces, either in plane cultures or in a roller apparatus within a culture chamber, for hours up to a month. During the cultures cells on the titanium surfaces were examined for histology, protein secretion and gene expression. Results show that a complete osteointegration using human DPSCs has been obtained: these cells were capable to quickly differentiate into osteoblasts and endotheliocytes and, then, able to produce bone tissue along the implant surfaces. Osteoblast differentiation of DPSCs and bone morphogenetic protein production was obtained in a better and quicker way, when challenging stem cells with the LST surfaces. This successful BTE in a comparatively short time gives interesting data suggesting that LST is a promising alternative for clinical use in DI.

The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures.

MANGANO, CARLO;
2010

Abstract

Bone Tissue Engineering (BTE) and Dental Implantology (DI) require the integration of implanted structures, with well characterized surfaces, in bone. In this work we have challenged acid-etched titanium (AET) and Laser Sintered Titanium (LST) surfaces with either human osteoblasts or stem cells from human dental pulps (DPSCs), to understand their osteointegration and clinical use capability of derived implants. DPSCs and human osteoblasts were challenged with the two titanium surfaces, either in plane cultures or in a roller apparatus within a culture chamber, for hours up to a month. During the cultures cells on the titanium surfaces were examined for histology, protein secretion and gene expression. Results show that a complete osteointegration using human DPSCs has been obtained: these cells were capable to quickly differentiate into osteoblasts and endotheliocytes and, then, able to produce bone tissue along the implant surfaces. Osteoblast differentiation of DPSCs and bone morphogenetic protein production was obtained in a better and quicker way, when challenging stem cells with the LST surfaces. This successful BTE in a comparatively short time gives interesting data suggesting that LST is a promising alternative for clinical use in DI.
http://dx.doi.org/10.1016/j.biomaterials.2010.01.056
Base Sequence, Bone Development, Cell Adhesion, Cell Differentiation, DNA Primers, Dental Pulp; cytology, Flow Cytometry, Humans, Microscopy; Electron; Scanning, Osteoblasts; cytology, Reverse Transcriptase Polymerase Chain Reaction, Stem Cells; cytology, Tissue Engineering, Titanium
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/1746150
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 106
  • ???jsp.display-item.citation.isi??? 106
social impact