Modern software systems are often characterized by uncertainty and changes in the environment in which they are embedded. Hence, they must be designed as adaptive systems. We propose a framework that supports adaptation to non-functional manifestations of uncertainty. Our framework allows engineers to derive, from an initial model of the system, a finite state automaton augmented with probabilities. The system is then executed by an interpreter that navigates the automaton and invokes the component implementations associated to the states it traverses. The interpreter adapts the execution by choosing among alternative possible paths of the automaton in order to maximize the system's ability to meet its non-functional requirements. To demonstrate the adaptation capabilities of the proposed approach we implemented an adaptive application inspired by an existing worldwide distributed mobile application and we discussed several adaptation scenarios.

Managing non-functional uncertainty via model-driven adaptivity

SPOLETINI, PAOLA;
2013-01-01

Abstract

Modern software systems are often characterized by uncertainty and changes in the environment in which they are embedded. Hence, they must be designed as adaptive systems. We propose a framework that supports adaptation to non-functional manifestations of uncertainty. Our framework allows engineers to derive, from an initial model of the system, a finite state automaton augmented with probabilities. The system is then executed by an interpreter that navigates the automaton and invokes the component implementations associated to the states it traverses. The interpreter adapts the execution by choosing among alternative possible paths of the automaton in order to maximize the system's ability to meet its non-functional requirements. To demonstrate the adaptation capabilities of the proposed approach we implemented an adaptive application inspired by an existing worldwide distributed mobile application and we discussed several adaptation scenarios.
2013
David Notkin, Betty H. C. Cheng, Klaus Pohl
Proceedings of the 35th International Conference on Software Engineering
9781467330763
35th International Conference on Software Engineering
San Francisco, USA
May 18-26, 2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1836918
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 64
social impact