We prove mean and sectional curvature estimates for submanifolds confined into either a horocylinder of N × L or a horoball of N , where N is a Cartan–Hadamard manifold with pinched curvature. Thus, these submanifolds behave in many respects like submanifolds immersed into compact balls and into cylinders over compact balls. The proofs rely on the Hessian comparison theorem for the Busemann function.

Curvature estimates for submanifolds immersed into horoballs and horocylinders

PIGOLA, STEFANO;SETTI, ALBERTO GIULIO
2015-01-01

Abstract

We prove mean and sectional curvature estimates for submanifolds confined into either a horocylinder of N × L or a horoball of N , where N is a Cartan–Hadamard manifold with pinched curvature. Thus, these submanifolds behave in many respects like submanifolds immersed into compact balls and into cylinders over compact balls. The proofs rely on the Hessian comparison theorem for the Busemann function.
http://www.sciencedirect.com.remoteaccess.uninsubria.it/science/article/pii/S0022247X15005533/pdfft?md5=2491f548db56e927bbea2a7938532ba4&pid=1-s2.0-S0022247X15005533-main.pdf
Curvature estimates, Submanifolds, Cartan–Hadamard manifolds, Horoballs, Horocylinders
Bessa, G. Pacelli; de Lira, Jorge H.; Pigola, Stefano; Setti, ALBERTO GIULIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2024121
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact