We study the relations between (tight) logarithmic Sobolev inequalities, entropy decay and spectral gap inequalities for Markov evolutions on von Neumann algebras. We prove that log-Sobolev inequalities (in the non-commutative form defined by Olkiewicz and Zegarlinski in Ref. 25) imply spectral gap inequalities, with optimal relation between the constants. Furthermore, we show that a uniform exponential decay of a proper relative entropy is equivalent to a modified version of log-Sobolev inequalities. The relations among the mentioned inequalities are investigated and often depend on some regularity conditions, which are also discussed. With regard to this aspect, we provide an example of a positive identity-preserving semigroup not verifying the usually requested regularity conditions (which are always fulfilled for reversible classical Markov processes).

Logarithmic Sobolev inequalities in non-commutative algebras

MARTINELLI, ANDREA
2015-01-01

Abstract

We study the relations between (tight) logarithmic Sobolev inequalities, entropy decay and spectral gap inequalities for Markov evolutions on von Neumann algebras. We prove that log-Sobolev inequalities (in the non-commutative form defined by Olkiewicz and Zegarlinski in Ref. 25) imply spectral gap inequalities, with optimal relation between the constants. Furthermore, we show that a uniform exponential decay of a proper relative entropy is equivalent to a modified version of log-Sobolev inequalities. The relations among the mentioned inequalities are investigated and often depend on some regularity conditions, which are also discussed. With regard to this aspect, we provide an example of a positive identity-preserving semigroup not verifying the usually requested regularity conditions (which are always fulfilled for reversible classical Markov processes).
2015
http://www.worldscientific.com/doi/10.1142/S0219025715500113
entropy decay; logarithmic Sobolev inequalities; Quantum Markov semigroups; spectral gap; Applied Mathematics; Statistics and Probability; Mathematical Physics; Statistical and Nonlinear Physics
Carbone, Raffaella; Martinelli, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2024260
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact