Background:A compromised base excision repair (BER) promotes carcinogenesis by accumulating oxidative DNA-damaged products as observed in MUTYH-associated polyposis, a hereditary colorectal cancer syndrome marked by adenomas and cancers with an accumulation of 8-oxoguanine. Remarkably, DNA global demethylation has been shown to be mediated by BER, suggesting a relevant interplay with early colorectal tumourigenesis. To check this hypothesis, we investigated a cohort of 49 adenomas and 10 carcinomas, derived from 17 MUTYH-associated polyposis patients; as adenoma controls, we used a set of 36 familial adenomatous polyposis and 24 sporadic polyps.Methods:Samples were analysed for their mutational and epigenetic status, measured as global LINE-1 (long interspersed nuclear element) and gene-specific LINE-1 MET methylation by mass spectrometry and pyrosequencing.Results:MUTYH-associated polyposis adenomas were strikingly more hypomethylated than familial adenomatous and sporadic polyps for both DNA demethylation markers (P=0.032 and P=0.007 for LINE-1; P=0.004 and P<0.0001 for LINE-1 MET, respectively) with levels comparable to those of the carcinomas derived from the same patients. They also had mutations due mainly to KRAS/NRAS p.G12C, which was absent in the controls (P<0.0001 for both sets).Conclusions:Our results show that DNA demethylation, together with specific KRAS/NRAS mutations, drives the early steps of oxidative damage colorectal tumourigenesis.British Journal of Cancer advance online publication, 31 January 2017; doi:10.1038/bjc.2017.9 www.bjcancer.com.

Oxidative DNA damage induces hypomethylation in a compromised base excision repair colorectal tumourigenesis

FURLAN, DANIELA;TRAPANI, DAVIDE;LIBERA, LAURA;SAHNANE, NORA;RIVA, CRISTINA;SESSA, FAUSTO;
2017

Abstract

Background:A compromised base excision repair (BER) promotes carcinogenesis by accumulating oxidative DNA-damaged products as observed in MUTYH-associated polyposis, a hereditary colorectal cancer syndrome marked by adenomas and cancers with an accumulation of 8-oxoguanine. Remarkably, DNA global demethylation has been shown to be mediated by BER, suggesting a relevant interplay with early colorectal tumourigenesis. To check this hypothesis, we investigated a cohort of 49 adenomas and 10 carcinomas, derived from 17 MUTYH-associated polyposis patients; as adenoma controls, we used a set of 36 familial adenomatous polyposis and 24 sporadic polyps.Methods:Samples were analysed for their mutational and epigenetic status, measured as global LINE-1 (long interspersed nuclear element) and gene-specific LINE-1 MET methylation by mass spectrometry and pyrosequencing.Results:MUTYH-associated polyposis adenomas were strikingly more hypomethylated than familial adenomatous and sporadic polyps for both DNA demethylation markers (P=0.032 and P=0.007 for LINE-1; P=0.004 and P<0.0001 for LINE-1 MET, respectively) with levels comparable to those of the carcinomas derived from the same patients. They also had mutations due mainly to KRAS/NRAS p.G12C, which was absent in the controls (P<0.0001 for both sets).Conclusions:Our results show that DNA demethylation, together with specific KRAS/NRAS mutations, drives the early steps of oxidative damage colorectal tumourigenesis.British Journal of Cancer advance online publication, 31 January 2017; doi:10.1038/bjc.2017.9 www.bjcancer.com.
http://www.nature.com/bjc/index.html
Oncology; Cancer Research
Furlan, Daniela; Trapani, Davide; Berrino, Enrico; Debernardi, Carla; Panero, Mara; Libera, Laura; Sahnane, Nora; Riva, Cristina; Tibiletti, MARIA GRAZIA; Sessa, Fausto; Sapino, Anna; Venesio, Tiziana
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/2060056
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact