We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit ZT for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.
Thermoelectric properties of an interacting quantum dot based heat engine
BENENTI, GIULIANO;
2017-01-01
Abstract
We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit ZT for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.