We consider transport properties for a non-homogeneous persistent random walk, that may be viewed as a mean-field version of the Lévy-Lorentz gas, namely a 1D model characterized by a fat polynomial tail of the distribution of scatterers' distance, with parameter μ. By varying the value of μ we have a transition from normal transport to superdiffusion, which we characterize by appropriate continuum limits.

Non-homogeneous persistent random walks and Lévy-Lorentz gas

Artuso, Roberto;ONOFRI, MANUELE;RADICE, MATTIA
2018-01-01

Abstract

We consider transport properties for a non-homogeneous persistent random walk, that may be viewed as a mean-field version of the Lévy-Lorentz gas, namely a 1D model characterized by a fat polynomial tail of the distribution of scatterers' distance, with parameter μ. By varying the value of μ we have a transition from normal transport to superdiffusion, which we characterize by appropriate continuum limits.
2018
http://iopscience.iop.org/article/10.1088/1742-5468/aad822/pdf
diffusion in random media; transport properties; Statistical and Nonlinear Physics; Statistics and Probability; Statistics, Probability and Uncertainty
Artuso, Roberto; Cristadoro, Giampaolo; Onofri, Manuele; Radice, Mattia
File in questo prodotto:
File Dimensione Formato  
document.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 207.79 kB
Formato Adobe PDF
207.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2075010
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact