We discuss how latent variable models are useful to deal with the complexities of big data from different perspectives: simplification of data structure; flexible representation of dependence between variables; reduction of selection bias. Problems involved in parameter estimation are also discussed.

On the role of latent variable models in the era of big data

Mira, Antonietta
2018-01-01

Abstract

We discuss how latent variable models are useful to deal with the complexities of big data from different perspectives: simplification of data structure; flexible representation of dependence between variables; reduction of selection bias. Problems involved in parameter estimation are also discussed.
2018
http://www.elsevier.com/locate/issn/01677152
Bayesian inference; Complex data; Maximum likelihood estimation; Parallel computing; Selection bias; Statistics, Probability and Uncertainty; Statistics and Probability
Bartolucci, Francesco; Bacci, Silvia; Mira, Antonietta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2076233
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact