exploits a Byzantine Fault Tolerant (BFT) blockchain, in order to perform collaborative and dynamic botnet detection by collecting and auditing IoT devices’ network traffic flows as blockchain transactions. Secondly, we take the challenge to decentralize IoT, and design a hybrid blockchain architecture for IoT, by proposing Hybrid-IoT. In Hybrid-IoT, subgroups of IoT devices form PoW blockchains, referred to as PoW sub-blockchains. Connection among the PoW sub-blockchains employs a BFT inter-connector framework. We focus on the PoW sub-blockchains formation, guided by a set of guidelines based on a set of dimensions, metrics and bounds.
Enhancing data privacy and security in Internet of Things through decentralized models and services(2018).
Enhancing data privacy and security in Internet of Things through decentralized models and services
2018-01-01
Abstract
exploits a Byzantine Fault Tolerant (BFT) blockchain, in order to perform collaborative and dynamic botnet detection by collecting and auditing IoT devices’ network traffic flows as blockchain transactions. Secondly, we take the challenge to decentralize IoT, and design a hybrid blockchain architecture for IoT, by proposing Hybrid-IoT. In Hybrid-IoT, subgroups of IoT devices form PoW blockchains, referred to as PoW sub-blockchains. Connection among the PoW sub-blockchains employs a BFT inter-connector framework. We focus on the PoW sub-blockchains formation, guided by a set of guidelines based on a set of dimensions, metrics and bounds.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_SagirlarGokhan_completa.pdf
accesso aperto
Descrizione: testo completo tesi
Tipologia:
Tesi di dottorato
Licenza:
Non specificato
Dimensione
6.26 MB
Formato
Adobe PDF
|
6.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.