We describe a computational method for parameter estimation in linear regression, that is capable of simultaneously producing sparse estimates and dealing with outliers and heavy-tailed error distributions. The method used is based on the image restoration method proposed in Huang et al. (2017)]. It can be applied to problems of arbitrary size. The choice of certain parameters is discussed. Results obtained for simulated and real data are presented.

Large-scale regression with non-convex loss and penalty

Buccini, Alessandro;Donatelli, Marco;Martinelli, Andrea;
2020-01-01

Abstract

We describe a computational method for parameter estimation in linear regression, that is capable of simultaneously producing sparse estimates and dealing with outliers and heavy-tailed error distributions. The method used is based on the image restoration method proposed in Huang et al. (2017)]. It can be applied to problems of arbitrary size. The choice of certain parameters is discussed. Results obtained for simulated and real data are presented.
2020
Regression; Regularization; Robustness; Non-convex Optimization
Buccini, Alessandro; De la Cruz Cabrera, Omar; Donatelli, Marco; Martinelli, Andrea; Reichel, Lothar
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2096112
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact