We study the spectral distribution of matrices arising in Galerkin isogeometric methods for weighted curl-div operators defined on a general planar domain. It can be compactly described by means of a spectral symbol which depends on the characteristic parameters of the problem: the weight parameters, the basic curl and div operators, the degree of the B-spline approximation, and the geometry map used to represent the computational domain.

Spectral analysis of isogeometric discretizations of 2d curl-div problems with general geometry

Mazza M.
Primo
;
2020-01-01

Abstract

We study the spectral distribution of matrices arising in Galerkin isogeometric methods for weighted curl-div operators defined on a general planar domain. It can be compactly described by means of a spectral symbol which depends on the characteristic parameters of the problem: the weight parameters, the basic curl and div operators, the degree of the B-spline approximation, and the geometry map used to represent the computational domain.
2020
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018
9783030396466
9783030396473
12th International Conference on Spectral and High-Order Methods, ICOSAHOM 2018
London
2018
File in questo prodotto:
File Dimensione Formato  
mazza 2020 lecture notes.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 588.74 kB
Formato Adobe PDF
588.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2097073
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact