We study the spectral distribution of matrices arising in Galerkin isogeometric methods for weighted curl-div operators defined on a general planar domain. It can be compactly described by means of a spectral symbol which depends on the characteristic parameters of the problem: the weight parameters, the basic curl and div operators, the degree of the B-spline approximation, and the geometry map used to represent the computational domain.
Spectral analysis of isogeometric discretizations of 2d curl-div problems with general geometry
Mazza M.
Primo
;
2020-01-01
Abstract
We study the spectral distribution of matrices arising in Galerkin isogeometric methods for weighted curl-div operators defined on a general planar domain. It can be compactly described by means of a spectral symbol which depends on the characteristic parameters of the problem: the weight parameters, the basic curl and div operators, the degree of the B-spline approximation, and the geometry map used to represent the computational domain.File | Dimensione | Formato | |
---|---|---|---|
mazza 2020 lecture notes.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
588.74 kB
Formato
Adobe PDF
|
588.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.