Recently, the need to assess personal exposure in different micro-environments has been highlighted. Further, estimating the inhaled dose of pollutants is considerably one of the most interesting parameters to be explored to complete the fundamental information obtained through exposure assessment, especially if associated with a dose-response approach. To analyze the main results obtained from the studies related to the estimation of the inhaled dose of pollutants in different micro-environments (environments in which an individual spends a part of his day), and to identify the influence of different parameters on it, a systematic review of the literature was performed. The principal outcomes from the considered studies outlined that (i) exposure concentration and residence time are among the most important parameters to be evaluated in the estimation of the inhaled dose, especially in transport environments. Further, (ii) the pulmonary ventilation rate can be of particular interest during active commuting because of its increase, which increases the inhalation of pollutants. From a methodological point of view, the advent of increasingly miniaturized, portable and low-cost technologies could favor these kinds of studies, both for the measurement of atmospheric pollutants and the real-time evaluation of physiological parameters used for estimation of the inhaled dose. The main results of this review also show some knowledge gaps. In particular, numerous studies have been conducted for the evaluation (in terms of personal exposure and estimation of the inhaled dose) of different PM fractions: other airborne pollutants, although harmful to human health, are less represented in studies of this type: for this reason, future studies should be conducted, also considering other air pollutants, not neglecting the assessment of exposure to PM. Moreover, many studies have been conducted indoors, where the population spends most of their daily time. However, it has been highlighted how particular environments, even if characterized by a shorter residence time, can contribute significantly to the dose of inhaled pollutants. These environments are, therefore, of particular importance and should be better evaluated in future studies, as well as occupational environments, where the work results in a high pulmonary ventilation rate. The attention of future studies should also be focused on these categories of subjects and occupational studies.

Estimation of the Inhaled Dose of Pollutants in Different Micro-Environments: A Systematic Review of the Literature

Borghi, Francesca
Primo
;
Spinazzè, Andrea
Secondo
;
Fanti, Giacomo;Campagnolo, Davide;Rovelli, Sabrina;Keller, Marta;Cattaneo, Andrea
Penultimo
;
Cavallo, Domenico Maria
Ultimo
2021-01-01

Abstract

Recently, the need to assess personal exposure in different micro-environments has been highlighted. Further, estimating the inhaled dose of pollutants is considerably one of the most interesting parameters to be explored to complete the fundamental information obtained through exposure assessment, especially if associated with a dose-response approach. To analyze the main results obtained from the studies related to the estimation of the inhaled dose of pollutants in different micro-environments (environments in which an individual spends a part of his day), and to identify the influence of different parameters on it, a systematic review of the literature was performed. The principal outcomes from the considered studies outlined that (i) exposure concentration and residence time are among the most important parameters to be evaluated in the estimation of the inhaled dose, especially in transport environments. Further, (ii) the pulmonary ventilation rate can be of particular interest during active commuting because of its increase, which increases the inhalation of pollutants. From a methodological point of view, the advent of increasingly miniaturized, portable and low-cost technologies could favor these kinds of studies, both for the measurement of atmospheric pollutants and the real-time evaluation of physiological parameters used for estimation of the inhaled dose. The main results of this review also show some knowledge gaps. In particular, numerous studies have been conducted for the evaluation (in terms of personal exposure and estimation of the inhaled dose) of different PM fractions: other airborne pollutants, although harmful to human health, are less represented in studies of this type: for this reason, future studies should be conducted, also considering other air pollutants, not neglecting the assessment of exposure to PM. Moreover, many studies have been conducted indoors, where the population spends most of their daily time. However, it has been highlighted how particular environments, even if characterized by a shorter residence time, can contribute significantly to the dose of inhaled pollutants. These environments are, therefore, of particular importance and should be better evaluated in future studies, as well as occupational environments, where the work results in a high pulmonary ventilation rate. The attention of future studies should also be focused on these categories of subjects and occupational studies.
2021
https://www.mdpi.com/2305-6304/9/6/140
activity patterns; indoor air pollution; outdoor air pollution; personal exposure; pulmonary ventilation rate; residence time
Borghi, Francesca; Spinazzè, Andrea; Mandaglio, Simone; Fanti, Giacomo; Campagnolo, Davide; Rovelli, Sabrina; Keller, Marta; Cattaneo, Andrea; Cavallo...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2113884
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact