Quantum properties of light, which are crucial resources for quantum technologies, are quite fragile in nature and can be degraded and even concealed by the environment. We show, both theoretically and experimentally, that mesoscopic twin-beam states of light can preserve their nonclassicality even in the presence of major losses and different types of noise, thus suggesting their potential usefulness to encode information in quantum communication protocols. We develop a comprehensive general analytical model for a measurable nonclassicality criterion and find thresholds on noise and losses for the survival of entanglement in the twin beam.
Effect of noisy channels on the transmission of mesoscopic twin-beam states
Allevi A.
;Bondani M.
2021-01-01
Abstract
Quantum properties of light, which are crucial resources for quantum technologies, are quite fragile in nature and can be degraded and even concealed by the environment. We show, both theoretically and experimentally, that mesoscopic twin-beam states of light can preserve their nonclassicality even in the presence of major losses and different types of noise, thus suggesting their potential usefulness to encode information in quantum communication protocols. We develop a comprehensive general analytical model for a measurable nonclassicality criterion and find thresholds on noise and losses for the survival of entanglement in the twin beam.File | Dimensione | Formato | |
---|---|---|---|
OE_noise_2021.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.44 MB
Formato
Adobe PDF
|
3.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.