Quantum properties of light, which are crucial resources for quantum technologies, are quite fragile in nature and can be degraded and even concealed by the environment. We show, both theoretically and experimentally, that mesoscopic twin-beam states of light can preserve their nonclassicality even in the presence of major losses and different types of noise, thus suggesting their potential usefulness to encode information in quantum communication protocols. We develop a comprehensive general analytical model for a measurable nonclassicality criterion and find thresholds on noise and losses for the survival of entanglement in the twin beam.

Effect of noisy channels on the transmission of mesoscopic twin-beam states

Allevi A.
;
Bondani M.
2021-01-01

Abstract

Quantum properties of light, which are crucial resources for quantum technologies, are quite fragile in nature and can be degraded and even concealed by the environment. We show, both theoretically and experimentally, that mesoscopic twin-beam states of light can preserve their nonclassicality even in the presence of major losses and different types of noise, thus suggesting their potential usefulness to encode information in quantum communication protocols. We develop a comprehensive general analytical model for a measurable nonclassicality criterion and find thresholds on noise and losses for the survival of entanglement in the twin beam.
2021
Allevi, A.; Bondani, M.
File in questo prodotto:
File Dimensione Formato  
OE_noise_2021.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.44 MB
Formato Adobe PDF
3.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2120008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact