Highly correlated systems, in particular those that include transition metals, are ubiquitous in catalysis. The significant static correlation found in such systems is often poorly accounted for using Kohn Sham density functional theory methods, as they are single determinantal in nature. Applications to catalysis of more rigorous and appropriate multiconfigurational methods have been reported in select instances, but their use remains rare. We discuss obstacles that hinder the routine application of multireference (MR) wave function theoretical calculations to catalytic systems and the current state of the art with respect to removing those obstacles.
Multireference Methods are Realistic and Useful Tools for Modeling Catalysis
Jenny G. Vitillo
Primo
;
2022-01-01
Abstract
Highly correlated systems, in particular those that include transition metals, are ubiquitous in catalysis. The significant static correlation found in such systems is often poorly accounted for using Kohn Sham density functional theory methods, as they are single determinantal in nature. Applications to catalysis of more rigorous and appropriate multiconfigurational methods have been reported in select instances, but their use remains rare. We discuss obstacles that hinder the routine application of multireference (MR) wave function theoretical calculations to catalytic systems and the current state of the art with respect to removing those obstacles.File | Dimensione | Formato | |
---|---|---|---|
Vitillo-MultireferenceMethods-IsraelJChem-2022.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.