We classify the critical points of the effective black hole potential which governs the attractor mechanism taking place at the horizon of static dyonic extremal black holes in N = 2, D = 4 Maxwell-Einstein supergravity with U(1) Fayet-Iliopoulos gaugings. We use a manifestly symplectic covariant formalism, and we consider both spherical and hyperbolic horizons, recognizing the relevant sub-classes to which some representative examples belong. We also exploit projective special Kähler geometry of vector multiplets scalar manifolds, the U-duality-invariant quartic structure (and 2-polarizations thereof) in order to retrieve and generalize various expressions of the entropy of asymptotically AdS4 BPS black holes, in the cases in which the scalar manifolds are symmetric spaces. Finally, we present a novel static extremal black hole solution to the STU model, in which the dilaton interpolates between an hyperbolic near-horizon geometry and AdS4 at infinity.

Black hole attractors and U(1) Fayet-Iliopoulos gaugings: analysis and classification

Astesiano D.
;
Cacciatori S. L.;
2022-01-01

Abstract

We classify the critical points of the effective black hole potential which governs the attractor mechanism taking place at the horizon of static dyonic extremal black holes in N = 2, D = 4 Maxwell-Einstein supergravity with U(1) Fayet-Iliopoulos gaugings. We use a manifestly symplectic covariant formalism, and we consider both spherical and hyperbolic horizons, recognizing the relevant sub-classes to which some representative examples belong. We also exploit projective special Kähler geometry of vector multiplets scalar manifolds, the U-duality-invariant quartic structure (and 2-polarizations thereof) in order to retrieve and generalize various expressions of the entropy of asymptotically AdS4 BPS black holes, in the cases in which the scalar manifolds are symmetric spaces. Finally, we present a novel static extremal black hole solution to the STU model, in which the dilaton interpolates between an hyperbolic near-horizon geometry and AdS4 at infinity.
2022
2022
Black Holes; Black Holes in String Theory; Supergravity Models
Astesiano, D.; Cacciatori, S. L.; Marrani, A.
File in questo prodotto:
File Dimensione Formato  
me-JHEP-3-2022.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 941.32 kB
Formato Adobe PDF
941.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2136040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact