Collective motion-or flocking-is an emergent phenomena that underlies many biological processes of relevance, from cellular migrations to animal group movements. In this work, we derive scaling relations for the fluctuations of the mean direction of motion and for the static density structure factor (which encodes static density fluctuations) in the presence of a homogeneous, small external field. This allows us to formulate two different and complementary criteria capable of detecting instances of directed motion exclusively from easily measurable dynamical and static signatures of the collective dynamics, without the need to detect correlations with environmental cues. The static one is informative in large enough systems, while the dynamical one requires large observation times to be effective. We believe these criteria may prove useful to detect or confirm the directed nature of collective motion in in vivo experimental observations, which are typically conducted in complex and not fully controlled environments.

Signatures of directed and spontaneous flocking

Brambati, Martino;Fava, Giuseppe;Ginelli, Francesco
2022-01-01

Abstract

Collective motion-or flocking-is an emergent phenomena that underlies many biological processes of relevance, from cellular migrations to animal group movements. In this work, we derive scaling relations for the fluctuations of the mean direction of motion and for the static density structure factor (which encodes static density fluctuations) in the presence of a homogeneous, small external field. This allows us to formulate two different and complementary criteria capable of detecting instances of directed motion exclusively from easily measurable dynamical and static signatures of the collective dynamics, without the need to detect correlations with environmental cues. The static one is informative in large enough systems, while the dynamical one requires large observation times to be effective. We believe these criteria may prove useful to detect or confirm the directed nature of collective motion in in vivo experimental observations, which are typically conducted in complex and not fully controlled environments.
2022
2022
Brambati, Martino; Fava, Giuseppe; Ginelli, Francesco
File in questo prodotto:
File Dimensione Formato  
PhysRevE.106.024608.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2139072
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact