Let n ≥ 5 be an odd integer. It is shown that {1σ(1),...,nσ(n)} is a complete residue system modulo n for some permutation σ of {1,...,n} if and only if 1 2(n - 1) is a Sophie Germain prime. Partial results are obtained also for the case n even.

A characterization of Sophie Germain primes

Leonetti P
2018-01-01

Abstract

Let n ≥ 5 be an odd integer. It is shown that {1σ(1),...,nσ(n)} is a complete residue system modulo n for some permutation σ of {1,...,n} if and only if 1 2(n - 1) is a Sophie Germain prime. Partial results are obtained also for the case n even.
2018
2017
https://www.worldscientific.com/doi/abs/10.1142/S1793042118500409
Complete residue system; permutations; safe primes; Sophie Germain primes
Leonetti, P
File in questo prodotto:
File Dimensione Formato  
SophieGermain.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 147.01 kB
Formato Adobe PDF
147.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2142098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact