Let n ≥ 5 be an odd integer. It is shown that {1σ(1),...,nσ(n)} is a complete residue system modulo n for some permutation σ of {1,...,n} if and only if 1 2(n - 1) is a Sophie Germain prime. Partial results are obtained also for the case n even.
A characterization of Sophie Germain primes
Leonetti P
2018-01-01
Abstract
Let n ≥ 5 be an odd integer. It is shown that {1σ(1),...,nσ(n)} is a complete residue system modulo n for some permutation σ of {1,...,n} if and only if 1 2(n - 1) is a Sophie Germain prime. Partial results are obtained also for the case n even.File | Dimensione | Formato | |
---|---|---|---|
SophieGermain.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
147.01 kB
Formato
Adobe PDF
|
147.01 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.