Objective During the induction of gaseous anaesthesia, waste anaesthetic gases (WAGs) can be released into workplace air. Occupational exposure to high levels of halogenated WAGs may lead to adverse health effects; hence, it is important to measure WAGs concentration levels to perform risk assessment and for health protection purposes. Methods A systematic review of the scientific literature was conducted on two different scientific databases (Scopus and PubMed). A total of 101 studies, focused on sevoflurane, desflurane and isoflurane exposures in hospitals, were included in this review. Key information was extracted to provide (1) a description of the study designs (e.g., monitoring methods, investigated occupational settings, anaesthetic gases in use); (2) an evaluation of time trends in the measured concentrations of considered WAGs; (3) a critical evaluation of the sampling strategies, monitoring methods and instruments used. Results Environmental monitoring was prevalent (68%) and mainly used for occupational exposure assessment during adult anaesthesia (84% of cases). Real-time techniques such as photoacoustic spectroscopy and infrared spectrophotometry were used in 58% of the studies, while off-line approaches such as active or passive sampling followed by GC-MS analysis were used less frequently (39%). Conclusions The combination of different instrumental techniques allowing the collection of data with different time resolutions was quite scarce (3%) despite the fact that this would give the opportunity to obtain reliable data for testing the compliance with 8 h occupational exposure limit values and at the same time to evaluate short-term exposures.

Occupational Exposure to Halogenated Anaesthetic Gases in Hospitals: A Systematic Review of Methods and Techniques to Assess Air Concentration Levels

Keller, M.;Cattaneo, A.
;
Spinazzè, A.;Campagnolo, D.;Rovelli, S.;Borghi, F.;Fanti, G.;Cavallo, D.
2023-01-01

Abstract

Objective During the induction of gaseous anaesthesia, waste anaesthetic gases (WAGs) can be released into workplace air. Occupational exposure to high levels of halogenated WAGs may lead to adverse health effects; hence, it is important to measure WAGs concentration levels to perform risk assessment and for health protection purposes. Methods A systematic review of the scientific literature was conducted on two different scientific databases (Scopus and PubMed). A total of 101 studies, focused on sevoflurane, desflurane and isoflurane exposures in hospitals, were included in this review. Key information was extracted to provide (1) a description of the study designs (e.g., monitoring methods, investigated occupational settings, anaesthetic gases in use); (2) an evaluation of time trends in the measured concentrations of considered WAGs; (3) a critical evaluation of the sampling strategies, monitoring methods and instruments used. Results Environmental monitoring was prevalent (68%) and mainly used for occupational exposure assessment during adult anaesthesia (84% of cases). Real-time techniques such as photoacoustic spectroscopy and infrared spectrophotometry were used in 58% of the studies, while off-line approaches such as active or passive sampling followed by GC-MS analysis were used less frequently (39%). Conclusions The combination of different instrumental techniques allowing the collection of data with different time resolutions was quite scarce (3%) despite the fact that this would give the opportunity to obtain reliable data for testing the compliance with 8 h occupational exposure limit values and at the same time to evaluate short-term exposures.
2023
2022
https://www.mdpi.com/1660-4601/20/1/514
waste anaesthetic gases; hospital staff; inhaled anaesthetics; volatile compounds; operating rooms; healthcare workers
Keller, M.; Cattaneo, A.; Spinazzè, A.; Carrozzo, L.; Campagnolo, D.; Rovelli, S.; Borghi, F.; Fanti, G.; Fustinoni, S.; Carrieri, M.; Moretto, A.; Cavallo, D.
File in questo prodotto:
File Dimensione Formato  
Keller_2022_Occupational Exposure to Halogenated Anaesthetic Gases.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2144471
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact