In 2002, the novel human gene G72 was associated with schizophrenia susceptibility. This gene encodes a small protein of 153 amino acids, named pLG72, which represents a rare case of primate-specific protein. In particular, the rs2391191 single nucleotide polymorphism (resulting in in the R30K substitution) was robustly associated to schizophrenia and bipolar disorder. In this review, we aim to summarize the results of 20 years of biochemical investigations on pLG72. The main known role of pLG72 is related to its ability to bind and inactivate the flavoenzyme d-amino acid oxidase, i.e., the enzyme that controls the catabolism of d-serine, the main NMDA receptor coagonist in the brain. pLG72 was proposed to target the cytosolic form of d-amino acid oxidase for degradation, preserving d-serine and protecting the cell from oxidative stress generated by hydrogen peroxide produced by the flavoenzyme reaction. Anyway, pLG72 seems to play additional roles, such as affecting mitochondrial functions. The level of pLG72 in the human body is still a controversial issue because of its low expression and challenging detection. Anyway, the intriguing hypothesis that pLG72 level in blood could represent a suitable marker of Alzheimer's disease progression (a suggestion not sufficiently established yet) merits further investigations.

Biochemical Properties and Physiological Functions of pLG72: Twenty Years of Investigations

Murtas, Giulia
Primo
;
Pollegioni, Loredano
Secondo
;
Molla, Gianluca;Sacchi, Silvia
Ultimo
2022-01-01

Abstract

In 2002, the novel human gene G72 was associated with schizophrenia susceptibility. This gene encodes a small protein of 153 amino acids, named pLG72, which represents a rare case of primate-specific protein. In particular, the rs2391191 single nucleotide polymorphism (resulting in in the R30K substitution) was robustly associated to schizophrenia and bipolar disorder. In this review, we aim to summarize the results of 20 years of biochemical investigations on pLG72. The main known role of pLG72 is related to its ability to bind and inactivate the flavoenzyme d-amino acid oxidase, i.e., the enzyme that controls the catabolism of d-serine, the main NMDA receptor coagonist in the brain. pLG72 was proposed to target the cytosolic form of d-amino acid oxidase for degradation, preserving d-serine and protecting the cell from oxidative stress generated by hydrogen peroxide produced by the flavoenzyme reaction. Anyway, pLG72 seems to play additional roles, such as affecting mitochondrial functions. The level of pLG72 in the human body is still a controversial issue because of its low expression and challenging detection. Anyway, the intriguing hypothesis that pLG72 level in blood could represent a suitable marker of Alzheimer's disease progression (a suggestion not sufficiently established yet) merits further investigations.
2022
2022
D-serine; NMDA receptor; protein-protein interaction; schizophrenia; Alzheimer’s disease
Murtas, Giulia; Pollegioni, Loredano; Molla, Gianluca; Sacchi, Silvia
File in questo prodotto:
File Dimensione Formato  
Biochemical-Properties-and-Physiological-Functions-of-pLG72-Twenty-Years-of-InvestigationsBiomolecules.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 10.06 MB
Formato Adobe PDF
10.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2144972
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact