Let φ be Euler’s function and fix an integer k≥0 . We show that for every initial value x1≥1 , the sequence of positive integers (xn)n≥1 defined by xn+1=φ(xn)+k for all n≥1 is eventually periodic. Similarly, for all initial values x1,x2≥1 , the sequence of positive integers (xn)n≥1 defined by xn+2=φ(xn+1)+φ(xn)+k for all n≥1 is eventually periodic, provided that k is even.

On iterates of shifted Euler's function

Paolo Leonetti
;
2023-01-01

Abstract

Let φ be Euler’s function and fix an integer k≥0 . We show that for every initial value x1≥1 , the sequence of positive integers (xn)n≥1 defined by xn+1=φ(xn)+k for all n≥1 is eventually periodic. Similarly, for all initial values x1,x2≥1 , the sequence of positive integers (xn)n≥1 defined by xn+2=φ(xn+1)+φ(xn)+k for all n≥1 is eventually periodic, provided that k is even.
2023
2023
https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/on-the-iterates-of-the-shifted-eulers-function/EA94859586A3742D43EA0E099B2630A9
nonlinear recurrence sequences; periodic sequences; Euler’s function; iterates
Leonetti, Paolo; Luca, Florian
File in questo prodotto:
File Dimensione Formato  
on-the-iterates-of-the-shifted-eulers-function.pdf

accesso aperto

Licenza: Creative commons
Dimensione 254.62 kB
Formato Adobe PDF
254.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2163272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact