Let φ be Euler’s function and fix an integer k≥0 . We show that for every initial value x1≥1 , the sequence of positive integers (xn)n≥1 defined by xn+1=φ(xn)+k for all n≥1 is eventually periodic. Similarly, for all initial values x1,x2≥1 , the sequence of positive integers (xn)n≥1 defined by xn+2=φ(xn+1)+φ(xn)+k for all n≥1 is eventually periodic, provided that k is even.
On iterates of shifted Euler's function
Paolo Leonetti
;
2023-01-01
Abstract
Let φ be Euler’s function and fix an integer k≥0 . We show that for every initial value x1≥1 , the sequence of positive integers (xn)n≥1 defined by xn+1=φ(xn)+k for all n≥1 is eventually periodic. Similarly, for all initial values x1,x2≥1 , the sequence of positive integers (xn)n≥1 defined by xn+2=φ(xn+1)+φ(xn)+k for all n≥1 is eventually periodic, provided that k is even.File | Dimensione | Formato | |
---|---|---|---|
on-the-iterates-of-the-shifted-eulers-function.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
254.62 kB
Formato
Adobe PDF
|
254.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.