We show that a normalized capacity ν : P(N) → R is invariant with respect to an ideal I on N if and only if it can be represented as a Choquet average of {0, 1}-valued finitely additive probability measures corresponding to the ultrafilters containing the dual filter of I. This is obtained as a consequence of an abstract analogue in the context of Archimedean Riesz spaces.
Capacities and Choquet averages of ultrafilters
Paolo Leonetti
;
2024-01-01
Abstract
We show that a normalized capacity ν : P(N) → R is invariant with respect to an ideal I on N if and only if it can be represented as a Choquet average of {0, 1}-valued finitely additive probability measures corresponding to the ultrafilters containing the dual filter of I. This is obtained as a consequence of an abstract analogue in the context of Archimedean Riesz spaces.File | Dimensione | Formato | |
---|---|---|---|
Averages_Ultrafilters_revision.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
314.15 kB
Formato
Adobe PDF
|
314.15 kB | Adobe PDF | Visualizza/Apri |
S0002-9939-2024-16642-9.pdf
non disponibili
Descrizione: versione editoriale dell'articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
240.97 kB
Formato
Adobe PDF
|
240.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.