We present two constructions of complex symplectic structures on Lie algebras with large Abelian ideals. In particular, we completely classify complex symplectic structures on almost Abelian Lie algebras. By considering compact quotients of their corresponding connected, simply connected Lie groups we obtain many examples of complex symplectic manifolds which do not carry (hyper)kähler metrics. We also produce examples of compact complex symplectic manifolds endowed with a fibration whose fibers are Lagrangian tori.

Complex symplectic lie algebras with large abelian subalgebras

Bazzoni G.;
2023-01-01

Abstract

We present two constructions of complex symplectic structures on Lie algebras with large Abelian ideals. In particular, we completely classify complex symplectic structures on almost Abelian Lie algebras. By considering compact quotients of their corresponding connected, simply connected Lie groups we obtain many examples of complex symplectic manifolds which do not carry (hyper)kähler metrics. We also produce examples of compact complex symplectic manifolds endowed with a fibration whose fibers are Lagrangian tori.
2023
2023
Complex symplectic structures; Nilpotent and almost Abelian Lie algebras; Lagrangian fibrations
Bazzoni, G.; Freibert, M.; Latorre, A.; Tardini, N.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0024379523003051-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 760.46 kB
Formato Adobe PDF
760.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2164211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact